F-调和映照的不存在性定理
被引量:3
Nonexistence Theorems for F-Harmonic Maps
摘要
本文主要讨论一类F-调和映照的不存在性问题,从而得到相应的Liouville型定理.
We discuss the nonexistence problems for a large class of F -harmonic maps, and obtain the corresponding Liouville theorems.
基金
国家自然科学基金(10571129)
数学天元基金(A0324662)
西北师范大学青年教师科研基金
参考文献10
-
1ARA M. Geometry of F-harmonic maps [J]. Kodai Math. J., 1999, 22: 243-263.
-
2SACKS J, UHLENBECK K. The existence of minimal immersions of 2-spheres [J]. Ann. Math., 1981, 113:1-24.
-
3ARA M. Stability of F-Harmonic maps into pinched manifolds [J]. Hiroshima Math. J.,2000,31: 171-181.
-
4ARA M. Instability and nonexistence theorems for F-Harmonic maps [J]. Illinois J. Math., 2001, 45(2):657-680.
-
5李锦堂.正拼挤流形的F-调和映射[J].数学学报(中文版),2003,46(4):811-814. 被引量:2
-
6SEALEY H C J. Some conditions ensuring the vanishing of harmonic differential forms with applications to harmonic maps and Yang-Mills theory [J]. Math. Proc. Cambridge Philos. Soc., 1982, 91:441-452.
-
7HU He-sheng. A nonexistence theorem for harmonic maps with slowly divergent energy[J].Chinese Ann.Math. Set. B, 1984, 5(4): 737-740.
-
8XIN Yuan-long. Liouville Type Theorems and Regularity of Harmonic Maps [M]. Lecture Notes in Math.,1255, Springer, Berlin, 1987.
-
9张希.关于p-调和映照的Liouville型定理[J].数学年刊(A辑),2000,1(1):95-98. 被引量:3
-
10DING Qing. The Dirichlet problem at infinity for manifolds of nonpositive curvature [C]. Differential geometry(Shanghai, 1991), 49-58, World Sci. Publishing, River Edge, NJ, 1993.
二级参考文献8
-
1Ara M., Geometry of F-harmonic maps, Kodai. Math. J., 1999, 22: 243-263.
-
2Peng J. G., Some relations between minimal submanifolds and harmonic maps, Chin. Ann. Math., 1984, 5A:85-89 (in Chinese).
-
3Pan Y. L., Some nonexistence theorems on stable harmonic mappings, Chin. Ann. Math. 1982, 3: 515-518.
-
4忻元龙,调和映照,1995年
-
5Wei S W,J Geom Acaly,1994年,4卷,247页
-
6Xin Y L,Springer Verlag Lecture Notes Math,1987年,1255卷,198页
-
7Green R,Springer Verlag Lecture Notes Math,1979年,699卷,19页
-
8Schoen R,Comm Math Helvetici,1976年,39卷,333页
同被引文献17
-
1刘建成.指数调和映照的Liouville型定理[J].兰州大学学报(自然科学版),2005,41(6):122-124. 被引量:2
-
2Ara M. Geometry of F - Harmonic Maps [ J ]. Kodai Math, 1999,22:243 - 263.
-
3Ara M. Geometry of F-harmonic maps[J]. Kodai Math. J., 1999, 22: 243-263.
-
4Sacks J, Uhlenbeck K. The existence of minimal immersions of 2-spheresIJ]. Ann. of Math., 1981, 113: 1-24.
-
5Fardoun A. On equivariant p-harmonic maps[J]. Ann. Inst. Henri Poincare, 1998, 15(1): 25-72.
-
6Ratto A. On the Dirichlet problem for harmonic maps into spheres or ellipsoid and equivariant harmonic maps from warped products[J]. Bull. Soc. Math. Belgique, 1989, 41(2): 145-168.
-
7Karcher H, Wood J C. Non-existence results and growth properties for harmonic maps and forms[J]. J. Reine. Angew. Math., 1984, 353: 165-180.
-
8Lemaire L. Applications harmoniques de surfaces riemanniennes[J]. J. Diff. Geom., 1978, 13: 51-78.
-
9Chen Qun. Stability and constant boundary-value problems of harmonic maps with potential[J]. J. Austral. Math. Soc. Series A, 2000, 68: 145-154.
-
10Zhou ZhenRong, Stability and quantum phenomena and Liouville theorems of p-harmonic maps with potential[J]. Kodai Math. J., 2003, 26: 101-118.
-
1姚松.带位势调和映照的守恒律及其性质[J].复旦学报(自然科学版),2002,41(5):570-576.
-
2韩英波,方联银,李静.带位势的弱F-调和映照的单调公式[J].信阳师范学院学报(自然科学版),2016,29(2):165-170. 被引量:3
-
3周朝晖,陈志华.调和映射的刘维尔型定理[J].同济大学学报(自然科学版),2012,40(5):772-774.
-
4肖箭,盛立人.Dulac的构造及其应用(Ⅱ)[J].数学学报(中文版),2002,45(5):953-958. 被引量:2
-
5肖箭,盛立人.Dulac函数的构造及其应用(Ⅰ)[J].数学学报(中文版),1999,42(4):665-670. 被引量:2
-
6庄兴义.二元函数极限不存在性问题之研究[J].贺州学院学报,1999,20(3):63-65. 被引量:1
-
7高黎.一类半线性椭圆型耦合方程组全局解的存在性和不存在性[J].中国海洋大学学报(自然科学版),2013,43(8):119-122. 被引量:1
-
8周孝后.四维弹性应力—能量张量及其分析[J].西北建筑工程学院学报(自然科学版),1993,10(4):32-36.
-
9刘建成.p-调和映照的能量增长性质[J].西北师范大学学报(自然科学版),2004,40(1):16-19. 被引量:2
-
10韩英波,冯书香.向量丛值p-形式的单调公式及消灭定理(英文)[J].数学进展,2015,44(4):587-598.