摘要
在比较宽松的条件下,研究了Banach空间中二阶脉冲积分微分方程在正半实轴上具有无穷个脉冲点的初值问题的解的存在性.利用递归法、Tonelii序列和局部凸拓扑,建立了新的存在性定理,对郭大钧的结果做了本质改进.
Under loose conditions, the existence of solutions to initial value problem are studied for second order impulsive integro-differential equation with infinite moments of impulse effect on the positive haft real axis in Banach spaces. By the use of rectarence method, Tonelii sequence and the locally convex topology, the new existence theorems are achieved, which improve the related results obtained by GUO Da-jun.
出处
《应用数学和力学》
EI
CSCD
北大核心
2006年第6期637-645,共9页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10572057)
关键词
脉冲积分微分方程
Tonelii序列
局部凸拓扑
非紧性测度
impulsive integro-differential equation
Tonelii sequence
locally convex topology
mea sure of noncompactness