期刊文献+

用有限元法计算特征值问题的一种新的动态凝聚方法 被引量:1

A NEW DYNAMIC CONDENSATION METHOD USING FINITE ELEMENT APPROACH TO CALCULATE EIGENVALUE PROBLEM
下载PDF
导出
摘要 有限元法是常用的建模方法,由于所建模型具有较大的自由度,通常需要进行降阶处理.一般来讲,模型前几阶特征值和特征向量可以较精确地得到,利用所得到的特征值和主振型分量(在特征向量中与所给定的主自由度对应的振型分量),本文提出了一种新的动态凝聚方法,该方法是通过迭代方式,利用所得到的特征值和主振型分量对Guyan降阶法所得到的降阶模型进行修正.与同类方法相比,本文方法具有较高的计算精度和很小的计算量,且迭代收敛的稳定性很好.最后本文给出了一个计算实例. Finite element method is an usual model-built method, in which the reduction transaction is necessary for the acquired model as it has a larger degrees of freedom(d, o. f. ), and generally speaking, the first several eigenvalues and eigenvectors can be accurately gained. In the paper, a new dynamic condensation method is presented based on the eigenvalues and master-mode-part (the parts corresponding to master d. o. f. in eigenvectors),and the reduction model obtained by Guyan reduction can be updated by aid of an iterative method, the eigenvalues and master-mode-part. Compared with congeneric other methods, the presented method has a higher calculation precision, smaller calculation efforts and better calculation stability. In the last, an example is given to show the effectiveness of the presented algorithms.
出处 《动力学与控制学报》 2006年第2期151-155,共5页 Journal of Dynamics and Control
基金 江苏省自然科学基金(BK2003083) 江苏省第二批"六大人才高峰"资助项目~~
关键词 模型降阶 动态凝聚 主振型分量 迭代 有限元分析 model reduction, dynamic condensation, master-mode-part,iteration,finite element
  • 相关文献

参考文献8

  • 1[1]Guyan RJ.Reduction of stiffness and mass matrices.AIAA Journal,1965,3(2):380~380
  • 2[2]Kim KO,Choi YJ.Energy Method for Selection of Degrees of Freedom in Condensation.AIAA Journal,2000,38(7):1253~1259
  • 3[3]Qu ZQ,Fu ZF.New structural dynamic condensation method for finite element models.AIAA Journal,1998,36(7):1320~1324
  • 4[4]Suarez LE,Singh MP.Dynamic condensation method for structural eigenvalue analysis.AIAA Journal,1998,30(4):1046~1054
  • 5[5]Friswell MI,Garvey SD,Penny JET.Model reduction using dynamic and iterated IRS techniques.Journal of Sound and Vibration,1995,186(2):311~323
  • 6[6]Friswell MI,Garvey SD,Penny JET.The convergence of the iterated IRS method.Journal of Sound and Vibration,1998,211(1):123~132
  • 7[7]Lin RM,Xia Y.Improvement on the iterated IRS method for structural eigensolutions.Journal of Sound and Vibration,2004,270:713~727
  • 8[8]Lin RM,Xia Y.A New Eigensolution of Structures via Dynamic Condensation.Journal of Sound and Vibration,2003,266:93~106

同被引文献19

  • 1Z·ak A.A novel formulation of a spectral plate element for wave propagation in isotropic structures.Finite Elements in Analysis and Design,2009,45(10):650~658.
  • 2Park H W,Kim E J,Lim K L,Sohn H.Spectral element formulation for dynamic analysis of a coupled piezoelectric wafer and beam system.Computers and Structures,2010,88(9-10):567~580.
  • 3Fabro A T,Ritto T G,Sampaio R,Arruda J R F.Sto-chastic analysis of a cracked rod modeled via the spectral element method.Mechanics Research Communications,2010,37(3):326~331.
  • 4Lee U.Equivalent continuum representation of lattice beams:spectral element approach.Engineering Structures,1998,20(7):587~592.
  • 5Howson W P,Williams F W.Natural frequencies of frameswith axially loaded Timoshenko members.Journal of Sound and Vibration,1973,26(4):503~515.
  • 6Friberg P O.Coupled vibration of beams-an exact dynamic element stiffness matrix.International Journal for Numeri-cal Methods in Engineering,1983,19(4):479~493.
  • 7Banerjee J R,Williams F W.An exact dynamic stiffness matrix for coupled extensional-torsional vibration of structur-al members.Computers&Structures,1994,50(2):161~166.
  • 8Issa M S.Natural frequencies of continuous curved beams on Winkler-type foundation.Journal of Sound and Vibra-tion,1988,127(2):291~310.
  • 9Leung A Y T.Exact stiffness matrix for twisted helix beam.Finite Elements in Analysis and Design,1991,9(1):23~32.
  • 10Eisenberger M,Abramovich H,Shulepov O.Dynamic stiffness analysis of laminated beams using a first order shear deformation theory.Computers&Structures,1995,31(4):265~271.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部