期刊文献+

横向磁场中矩形薄板在分布载荷作用下混沌分析(I) 被引量:6

THE CHAOS ANALYSIS OF RECTANGULAR PLATE UNDER DISTRIBUTED LOAD IN TRANSVERSE MAGNETIC FIELD(I)
下载PDF
导出
摘要 在建立置于横向稳恒电磁场中,同时受横向均布载荷作用四边简支的金属矩形薄板的受力模型的基础上,推导了金属矩型薄板的磁弹性耦合动力学方程,求得了该模型振动系统的异宿轨道参数方程,并根据Melnikov函数方法,推导并求解了振动系统的异宿轨道的Melnikov函数,最后给出了判断该系统发生Smale马蹄变换意义下混沌运动的条件和混沌运动判据.由此可对矩形薄板在机械载荷和电磁载荷共同作用下的分岔和混沌进行分析.本文给出的方法可以推广到其他不同边界条件和不同外载荷条件下弹性薄板的磁弹性振动问题的研究. In this paper, the model for thin rectangular plate coupled transverse invariable electro-magnetic with uniform transverse forces was built. The boundary of this model was that four edges were simply supported. Based on this, the coupled vibration equations of thin rectangular plate were derived, and the heteroclinic orbit parameter equations of this thin plate vibration system were solved. Using Melnikov function method, the heteroclinic orbit's Melnikov function of vibration system were derived and solved. Finally, the chaos condition and judging criterion of this system about Smale commutation were given. Thus, we can study the bifurcation and chaos of thin rectangular plate coupled mechanical loads with electro magnetic. The method offered in this paper may be used to study the elastic-magnetic vibration of thin plate under different boundary conditions and different external loads.
出处 《动力学与控制学报》 2006年第2期156-161,共6页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(50275128)~~
关键词 矩形薄板 分布载荷 磁弹性 混沌运动 MELNIKOV函数 thin rectangular plate, distributed load, magneto-elastic, chaos, Melnikov function
  • 相关文献

参考文献5

二级参考文献19

  • 1严宗达,蔡宗熙.弹性圆薄板受迫振动的浑沌判据[J].工程力学,1996,13(A02):276-279. 被引量:1
  • 2李继彬.混沌与 Melnikov方法 [M].重庆:重庆大学出版社,1988..
  • 3[5]Afraimovich VS,Glebsky I Ya,Nekorkin Ⅵ.Stability of stationary states and spatial choas in multidimensional lattice dynamical systems.Random Comput Dynam,1994,2,287~303
  • 4[6]Bunimovich LA,CaHen EA.On the problem of Stability Dynamical Systems.Journal of Differential Equations,1995,123:213~229
  • 5[2]Yang XL,Sathna PR.Local and global difurcations in parametrically excited vibrations of nearly square plates.Journal of applied mechanics,1991,26:190~ 197
  • 6[3]Abhyankar NS,Hall Ek,Hangud SV.Chaotic Vibrations of beam:Numerical solution of partial differtial equations.J Applied Mech,1993,60(3):167~ 174
  • 7[4]Tang DM,Dowell EH.On the threshold force for chaotic motion of a forced buckled beam.J Applied Mech,1988,55(2):190~196
  • 8Pao Y H,Proc IEEE,1975年,63卷,7期,1011页
  • 9Pao Y H,Int J Engng Sci,1973年,11卷,4期,415页
  • 10严宗达,结构力学中的傅里叶级数解法,1989年

共引文献82

同被引文献28

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部