期刊文献+

混沌态杜芬振子与弱正弦信号参量估计 被引量:14

Methods of Duffing Oscillator Chaotic Movement for Sine Wave Parameter Estimation
下载PDF
导出
摘要 建立了一个对微弱正弦信号参量变化极其敏感的动力学系统。首先对多参量简化杜芬方程进行了改进,采用梅尔尼科夫过程函数讨论了方程的解和微分流形的演化情况;分析了非高斯色噪声对杜芬振子混沌运动行为的影响;进而提出了一种新的非高斯色噪声背景下正弦信号参量估计方法。理论分析和仿真实验都表明,此杜芬振子混沌状态下对任何零均值噪声具有免疫力,对正弦信号参量变化极为敏感。 A dynamic system which is very sensitive to weak sine wave parameters is established, the multi-parameter complete Duffing equation is studied in detail. Methods of random Melnikov process function are introduced to analyze the equation and the differential trajectory, the influence of non-Gaussian color noise on Duffing oscillator chaotic motion behavior is also studied, a new chaotic method for the sine wave parameter estimation in non-Gaussian color noise environment is given. The theoretic analysis and the numerical result confirm the conclusion that the chaotic oscillator is immune to zero mean-square nonGanssian color noise and very sensitive to weak variation for sine wave parameters.
出处 《计量学报》 EI CSCD 北大核心 2006年第2期156-159,共4页 Acta Metrologica Sinica
关键词 计量学 非高斯色噪声 混沌 杜芬振子 参量估计 Metrology Non-Gaussian color noise Chaos Duffing oscillator Parameter estimation
  • 相关文献

参考文献4

  • 1Yi Wensuo,Shi Yaowu.Research on the Methods of Duffing Chaotic Oscillator for Sine Wave Parameter Estimation[A].Proceedings of the 2nd International Conference on Information Technology for Application[C].2001,246 ~249.
  • 2Kawakami H.Bifurcation of periodic responses in forced dynamic nonlinear circuits:computation of bifurcation values of the system parameters[J].IEEE Trans Circuit Systems,1984,31 (3):248 ~ 260.
  • 3聂春燕.微弱信号的混沌检测方法研究[D].长春:吉林大学,1999:37~43.
  • 4Root J G.Optimal control of non-Gaussian linear stochastic systems with inaccessible state variables[J].SIAM J,1969,7(2):317 ~ 323.

同被引文献94

引证文献14

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部