摘要
建立了一个对微弱正弦信号参量变化极其敏感的动力学系统。首先对多参量简化杜芬方程进行了改进,采用梅尔尼科夫过程函数讨论了方程的解和微分流形的演化情况;分析了非高斯色噪声对杜芬振子混沌运动行为的影响;进而提出了一种新的非高斯色噪声背景下正弦信号参量估计方法。理论分析和仿真实验都表明,此杜芬振子混沌状态下对任何零均值噪声具有免疫力,对正弦信号参量变化极为敏感。
A dynamic system which is very sensitive to weak sine wave parameters is established, the multi-parameter complete Duffing equation is studied in detail. Methods of random Melnikov process function are introduced to analyze the equation and the differential trajectory, the influence of non-Gaussian color noise on Duffing oscillator chaotic motion behavior is also studied, a new chaotic method for the sine wave parameter estimation in non-Gaussian color noise environment is given. The theoretic analysis and the numerical result confirm the conclusion that the chaotic oscillator is immune to zero mean-square nonGanssian color noise and very sensitive to weak variation for sine wave parameters.
出处
《计量学报》
EI
CSCD
北大核心
2006年第2期156-159,共4页
Acta Metrologica Sinica
关键词
计量学
非高斯色噪声
混沌
杜芬振子
参量估计
Metrology
Non-Gaussian color noise
Chaos
Duffing oscillator
Parameter estimation