期刊文献+

基于时间序列数据流的挖掘频繁串行情节的研究 被引量:1

Mining Frequent Episodes Based on Time Serial Data Stream
下载PDF
导出
摘要 针对在时间序列数据流中挖掘频繁串行情节的问题,提出了一种具有可持续挖掘的方法—TFSE(Tim e-tab le-joined Frequent Serial Ep isodes)。该方法引入了情节时间表和再次挖掘的概念,一个情节模式对应一个情节时间表,通过在情节时间表之间做数据库联接操作,生成相应新的情节时间表。情节时间表记录个数即是该情节的支持数。 Aiming at mining frequent episodes in time serial data stream, an approach of Time -table -joined Frequent Serial Episodes (TFSE) is presented, which includes the conception of the episode - time - table and the re - mining. An Episode - time - table corresponds to an episode pattern and a new Episode - time - table is generated by the joining databases. The amount of records in the Episode - time - table is equal to the number of episodes occurring in the time series.
作者 周则顺
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2006年第5期12-16,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
关键词 数据挖掘 时间序列 情节时间表 频繁串行情节 data mining time series episode - time - table frequent serial episodes
  • 相关文献

参考文献8

  • 1AKRISHNAN S R, RAKESH A. Mining Sequential Patterns: Generalizations and Performance Improvements[A]. Proceedings of the 5th International Conference on Extending Database Technology [ C ]. Berlin : Springer - Verlag, 1996, 3 - 17.
  • 2MASSEGLIA F, CATHALA F, PONCELET P. The PSP Approach for Mining Sequential Patterns [ A ]. Proceedings of the 2nd European Symposium on Principles of Data Mining and Knowledge Discovery [ C ]. Berlin: Springer - Verlag, 1998. 176 - 184.
  • 3PEI J, HAN J. Behzad Mortazavi - Asl and Helen Pinto. PrefixSpan: Mining sequential patterns efficiently by prefix - projected pattern growth [ A ]. In Proc. 2001 Int. Conf. Data Engineering (ICDE'01) [ C]. Germany : Heidelberg, 2001.
  • 4MOHANMMED J. SPADE:An Efficient Algorithm for Mining Frequent Sequences [ J ]. Machine Leafing Journal,2001,42( 1 -2) :48 -51.
  • 5HAN J, PEI J, YIN Y. Mining Frequent Patterns Without Candidate Generation [ A ]. In: Chen WD, Naughton J, Bemstein PA, eds. Proc. of the 2000 ACM SIG MOD Int'l Conf. on Management of Data (SIGMOD 2000) [C]. New York:ACM Press, 2000. 1 - 12.
  • 6孟小峰.数据挖掘—概念与技术[M].北京:机械工业出版社,2001.
  • 7MANNILA H.TOIVONEN H.Inked Verkamo.Discovery of Frequent Episodes in Event Sequences,Report C-1997-15[D].[s.v.]:University of Helsinki,Department of Computer Science,1997.
  • 8FAN MING,MENG XIAOFENG.Data Mining——Conception and Techniques [M].BeiJing:China Machine Press,2001.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部