期刊文献+

电导率和流体分布关系的微观孔隙网络模型研究

MICROSCOPIC PORE NETWORK MODELING OF RELATIONSHIP BETWEEN ELECTRICAL CONDUCTIVITY AND FLUID DISTRIBUTION
下载PDF
导出
摘要 关于电导率和流体分布关系的研究还很少,仅有的一项研究是在有机玻璃微观模型上进行的。利用实际Berea砂岩的微CT断层三维图像原型数据,根据Yeong和Torquato提出的两相多孔介质的重构方法,用形状因子控制模型中的孔隙和喉道形状,运用模拟退火方法实现了孔隙岩样的重构过程;给出了模型的统计指标,包括孔隙与喉道大小、孔喉特征半径比等孔隙特征和孔喉形状、配位数等孔隙导通特征。由该模型计算得到的渗流特征和实际实验结果完全吻合,表明了模型的正确性。在此基础上,对电导率和流体分布的关系进行了微观孔隙网络模拟,结果表明随着孔隙形状及分布不同,分布在孔隙中的流体状态也发生变化,导致电阻率发生变化。这些结果可用孔隙中水膜的变化来解释。 Researches of relationship between electrical conductivity and fluid distribution are rarely documented and the only one research was performed on a microscopic organic glass model. Following the reconstruction algorithm proposed by Yeong and Torquato for reconstruction of a two-phase porous medium, simulated annealing algorithm is used to reconstruct porous rock samples, with pore and throat shapes controlled by shape factors, on the basis of the original 3D image data of real Berea sand samples acquired by X-ray micro-tomography. The statistical indexes of the mode are presented, including pore features such as pore and throat sizes and characteristic pore-throat radius ratio and conductivity features of pores such as pore and throat shapes and pore-throat coordinate number. Percolation features calculated with this model coincide well with real experiment results, indicating that the model is correct. Microscopic pore network modeling of the relationship between electrical conductivity and fluid distribution shows that flow status of fluids in pores change along with pore shape and distribution, resulting in change of resistivity. These results can be explained by variation of water film in pore space.
机构地区 中国石油大学
出处 《天然气工业》 EI CAS CSCD 北大核心 2006年第5期49-51,共3页 Natural Gas Industry
基金 国家自然科学基金资助项目(编号:90210018)部分研究成果。
关键词 孔隙喉道 模型 电导率 渗透率 流体流动 模型 pore throat, model, conductivity, permeability, fluid flow
  • 相关文献

参考文献6

  • 1GRATTONI C A,DAWE R A.Influence of fluid distribution upon electrical resistivity of partially saturated media[C].SPWLA 36th Annual Logging Symposium,1995.
  • 2吴晓东,潘新伟,王金勋.利用微观模型研究孔隙结构对气藏水束缚堵塞的影响规律[J].天然气工业,2004,24(4):60-61. 被引量:9
  • 3王金勋,吴晓东,杨普华,李贤兵.孔隙网络模型法计算气液体系吸吮过程相对渗透率[J].天然气工业,2003,23(3):8-11. 被引量:12
  • 4YEONG C L Y,TORQUATO S.Reconstructing random media[J].Physical Review,1998(57).
  • 5YEONG C L Y,TORQUATO S.Reconstructing random media.Ⅱ.Three dimensional media from two-dimensiomal cuts[J].Physical Review,1998(58).
  • 6OAK M J.Three-phase relative permeability of water-wet Berea[C].Proceedings of the SPE/DOE Seventh Symposium on Enhanced Oil Recovery,SPE 20183,Soc.of Petroleum Engineers,Tulsa,1990.

二级参考文献12

  • 1Du11ien F A L著 范玉平 赵东伟等译.现代渗流物理学(第二版)[M].北京:石油工业出版社,2001..
  • 2[1]Land C S.Calculation of Imbibition Relative Permeability for Two- and Three-Phase Flow From Rock properties,Soc.Pet.Eng.J.,149~156,June 1968
  • 3[2]Land C S.Comparison of Calculated with Experimental Imbibition Relative Permeability,Soc.Pet.Eng.J.,419~425,Dec 1971
  • 4[3]Killough J E.Reservoir Simulation with History-Dependent Saturation Functions,Soc.Pet.Eng.J.,37~48,Feb 1976
  • 5[4]Keelan D K.A Practical Approach to Determination of Imbibition Gas-Water Relative Permeability,J.Pet.Tech.,199~204,Feb.1976
  • 6[5]Francis M Carlson.Simulation of Relative Permeability Hysteresis to the Nonwetting Phase,SPE 10157,1981
  • 7[6]Honarpour,M.Koederitz,L.,and Harvey,A.H.,Relative Permeability of Petroleum Reservoirs,CRC Press Inc.,Boca Raton,FL,1986
  • 8[7]Kewen Li,Abbas Firoozabadi.Phenomenological Modeling of Critical-Condensate Saturation and Relative Permeability in Gas-Condensate System,SPE 56014,2000
  • 9[8]Fatt I.The Network model of porous media,Trans.AIMM,207,144~177,1956
  • 10[9]Jerauld G R.Scriven,L.E.,and Davis,H.T.,Percolation and Conduction on the 3D Voronoi and Regular Networks:A Second Case Study in Topological Disorder,J.Phys.Chem.(1984)17,3429~39

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部