摘要
研究了一类具有中间亏指数(m,m)的奇异对称常微分算子谱的性质.通过微分算子自共轭域的结构分析,证明了若对任何λ∈(μ1,μ2),方程τy=λy存在m个线性无关的L2-解.则由τ生成的最小算子T0的任何自共扩张A的特征值在区间(μ1,μ2)中是无处稠密的.
The spectral property of a class of singular symmetric ordinary differential operators with middle indices (m,m) is investigated. By means of analyzing the construction of self-adjoint domains of differential operators,it is proved that if for every λ∈(μ1,μ2) ,there exist m linearly indepent L^2-solutions of (τ-λ)y=0. Then the eigenvalues of every self-adjoint extension A of minimal operator To generated by differential expression τ are nowhere dense in interval (μ1 ,μ2).
出处
《内蒙古大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第3期246-250,共5页
Journal of Inner Mongolia University:Natural Science Edition
基金
国家自然科学基金资助项目(10561005)
教育部博士学科点专项科研基金(20040126008)
关键词
微分算子
中间亏指数
谱
稠密性
differential operator
middle deficiency indices
spectrum
density