期刊文献+

均衡二分图中含有大圈的2-因子的度和条件

A Degree Sum Condition of 2-factors with Large Cycles in Balanced Bipartite Graphs
下载PDF
导出
摘要 设G=(V1,V2;E)是一个二分图,满|V1|=|V2|=n sk+1足,其中s 4,k 1是两个正整数.定义G中不相邻两点的最小度和为σ2(G)=min{dG(u)+dG(v)∶u,v∈V(G),uv E(G)}.在这篇文章中,我们证明了如果σ2(G)2「(1-1s)n﹁+2。 Let G=(V1,V2;E) be a bipartite graph with |V1|= |V2|=n≥sk+1,where s≥4 and k≥l are two integers. We define the minimum degree sum of nonadjacent vertices of graph G to be σ2(G)=min{dG(u)+dG(v):u,v∈V(G),uv∈E(G)}. In this paper, we will prove that if σ2(G)≥2r(1-1/s)n]+2 then G has a 2 - factor with s exactly k vertex-disjoint cycles of length at least 2s.
出处 《华东交通大学学报》 2006年第1期143-147,共5页 Journal of East China Jiaotong University
关键词 均衡二分图 大圈 2-因子 balanced bipartite graphs cycles large cycles 2-factors
  • 相关文献

参考文献1

二级参考文献5

  • 1Bondy J A. Murty U S R. Graph Theory with Applications[M]. North-Holland, Amsterdam, 1976
  • 2Bondy J A, Chvatal V. A method in graph theory[J]. Discrete Math, 1976;15:111-135
  • 3Chen G, Gould R J, Jacobson M S. On 2-factors containing 1-factors in biparitite graphs[J]. Discrete Math,1999;197/198:185-194
  • 4Wang H. Large Vertex-disjoint cycles in a bipartite graph[J]. Graphs Comb, 2000;16:359-366
  • 5Wang H. On 2-factors of a bipartite graph[J]. J Graph Theory, 1999;31:101-106

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部