摘要
设G=(V1,V2;E)是一个二分图,满|V1|=|V2|=n sk+1足,其中s 4,k 1是两个正整数.定义G中不相邻两点的最小度和为σ2(G)=min{dG(u)+dG(v)∶u,v∈V(G),uv E(G)}.在这篇文章中,我们证明了如果σ2(G)2「(1-1s)n﹁+2。
Let G=(V1,V2;E) be a bipartite graph with |V1|= |V2|=n≥sk+1,where s≥4 and k≥l are two integers. We define the minimum degree sum of nonadjacent vertices of graph G to be σ2(G)=min{dG(u)+dG(v):u,v∈V(G),uv∈E(G)}. In this paper, we will prove that if σ2(G)≥2r(1-1/s)n]+2 then G has a 2 - factor with s exactly k vertex-disjoint cycles of length at least 2s.
出处
《华东交通大学学报》
2006年第1期143-147,共5页
Journal of East China Jiaotong University
关键词
均衡二分图
圈
大圈
2-因子
balanced bipartite graphs
cycles
large cycles
2-factors