期刊文献+

非奇H-矩阵的两个子类 被引量:9

Two Subsets of Nonsingular H-Matrix
下载PDF
导出
摘要 给出局部(α,β)-双对角占优矩阵的相关概念。对于给定的复矩阵A,在严格局部(α,β)-双对角占优及不可约局部(α,β)-双对角占优矩阵的条件下,通过建立合适的正对角阵X,得出B=AX为严格α-对角占优矩阵或不可约α-对角占优矩阵,从而获得了A为非奇异H-矩阵的两个实用判别准则。所得结果表明,提出这种延伸的局部(α,β)-双对角占优矩阵的概念,是对矩阵的对角占优理论的完善,是研究H-矩阵、M-矩阵的有力工具。这不仅促进了矩阵理论本身的发展,而且为计算数学、控制论等相关领域的研究奠定了更加坚实的基础。 The concept of local (α,β) - doubly diagonally dominant matrix was introduced, Under the conditions of strict local (α,β) -doubly diagonally dominant and irreducible local (α,β) - doubly diagonally dominant matrix, the conclusion that B = AX is a strict α - diagonally dominant matrix or irreducible α - diagonally dominant matrix was presented by constructing a suitable positive diagonal matrix X, for a given complex matrix A, thus two practical criterions of nonsingular H - matrix were obtained. The results show that the extended local (α,β) - doubly diagonally dominant concept is a development for matrix's doubly diagonally dominance' s theory and a powerful tool for re.arching of H - matrix and M - matrix, These conclusions not only promote the development of matrix's theory itself, but also provide strong basis for the research of relative fields such as computational mathematic, control theory, etc.
作者 李阳
出处 《石油化工高等学校学报》 EI CAS 2006年第1期93-96,共4页 Journal of Petrochemical Universities
基金 辽宁省教育厅高校科研项目(2004F100)
关键词 非奇异H-矩阵 不可约矩阵 局部(α β)-双对角占优 Nonsingular H- matfix Irreducible matrix Local (α,β) doubly diagonally dominance
  • 相关文献

参考文献8

二级参考文献27

  • 1黄廷祝.非奇H矩阵的简捷判据[J].计算数学,1993,15(3):318-328. 被引量:198
  • 2黄廷祝.Ostrowski定理的推广与非奇H矩阵的条件[J].计算数学,1994,16(1):19-24. 被引量:46
  • 3李阳,宋岱才.广义H-矩阵的若干性质[J].石油化工高等学校学报,2005,18(1):80-82. 被引量:10
  • 4逄明贤,孙玉祥.M-矩阵的等价表征[J].应用数学,1995,8(1):44-50. 被引量:20
  • 5逄明贤.广义对角占优矩阵的判定及应用[J].数学年刊:A辑,1985,6:323-330.
  • 6Li Bishan, Tsatsomeros M J. Doubly diagonally dominant matrices[J]. Linear Algebra Appl., 1997,261 : 221--235.
  • 7Sun Yuxiang. An improvement on a theorem by ostrowki and its applications[J]. Northeastern, Math. J. ,1991,7(4) : 497-- 502.
  • 8Berman, A. and Plemmons, R.J.. Nonnegative matrices in the mathematical sciences. NewYork: Academic Press, 1979.
  • 9Varga, R.S.. On recurring theorems on diagonal dominance. Linear Algebra Appl., 1976, 13:1-9.
  • 10Bishan, L. and Tsatsomeros, M.J..Doubly diagonally dominant matrices. Linear AlgebraAppl., 1997, 261:221-235.

共引文献171

同被引文献44

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部