期刊文献+

耐磨铸造Fe-B-C合金的研究 被引量:63

A STUDY OF ABRASION RESISTANT CAST Fe-B-C ALLOY
下载PDF
导出
摘要 借助光学显微镜、扫描电镜和X射线衍射分析等手段,研究了硼(B)含量>2.0%和碳(C)含量<0.2%的铸造 Fe-B-C合金的凝固组织及热处理后的组织和性能.铸造Fe-B-C合金的凝固组织由Fe2B、铁素体和珠光体组成,硼化物呈网状沿晶界分布.Fe-B-C合金经950℃正火处理后,局部出现断网现象,基体组织全部转变为板条马氏体,硬度大幅度提高, HRC接近60,冲击韧度大于10 J/cm2,动态断裂韧度大于30 MPa·m1/2.在干滑动磨损条件下,Fe-B-C合金的耐磨性优于镍硬白口铸铁和GCr15、Cr12MoV等合金钢,与高铬白口铸铁相当.Fe-B-C合金熔炼简便、铸造性能好,且不含Ni 和MO等昂贵合金元素,具有较低的生产成本. The solidification structures of cast Fe-B-C alloy containing more than 2.0%B and lower than 0.2%C and the structures and properties of alloy after heat treatment were researched by means of optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), hardness measurements, impact tester and pin abrasion tester. The results show that the solidification structures of cast Fe-B-C alloy consist of boride (Fe2B), pearlite and ferrite, and boride distributes along grain boundary in network form. After normalizing at 950 ℃, the part broken network of boride in cast Fe-B-C alloy appeared, the matrix all transformed into lath martensite. The hardness of cast Fe-B-C alloy increased obviously and neared to HRC 60, its impact toughness and dynamic fracture toughness exceeded 10 J/cm^2 and 30 MPa·m^1/2, respectively. In the condition of pin-on-disk wear, cast Fe-B-C alloy showed excellent abrasion resistance. Its abrasion resistance is more excellent than that of Ni-hard white cast iron, GCr15 and Cr12MoV, nears to that of high chromium white cast iron. Cast Fe-B-C alloy has simple melting process and good casting property, does not contain costly nickel and molybdenum elements and so has low production cost.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2006年第5期545-548,共4页 Acta Metallurgica Sinica
基金 中国博士后科学基金资助项目 2004036058
关键词 铸造Fe-B-C合金 硼化物 板条马氏体 耐磨性 cast Fe-B-C alloy, boride, lath martensite, abrasion resistance
  • 相关文献

参考文献18

  • 1Dogan O N,Hawk J A,Rice J.In:Association for Iron and Steel Technology ed.,AIST Process Metallurgy,Product Quality and Applications Proceedings,New Orleans,LA,Unite States,2004:451.
  • 2Laird G Ⅱ.AFS Trans,1991; 99:339.
  • 3Carpenter S D,Carpenter D,Pearce J T H.Mater Chem Phys,2004; 85(1):32.
  • 4Maldonado-Ruiz S I,Lopez D,Velasco A,Colas R.Mater Sci Technol,2004; 20:393.
  • 5范庆云,傅伟.高铬铸铁热处理裂纹产生原因及对策[J].机械工程师,1999(4):39-39. 被引量:1
  • 6Zumelzu E,Goyos I,Cabezas C,Opitz O,Parada A.J Mater Process Technol,2002; 128:250.
  • 7Tabrett C P,Sare I R,Ghomashchi M R.Int Mater Rev,1996; 41(2):59.
  • 8Ge C L,Ye R C,Zhu S C.J Chin Univ Min Technol,1997; 7(1):69.
  • 9Berns H,Fischer A.Mater Charact,1997; 39:499.
  • 10Martini C,Palombarini G,Poli G,Prandstraller D.Wear,2004; 256:608.

共引文献1

同被引文献394

引证文献63

二级引证文献240

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部