期刊文献+

非可加集函数的Hahn分解

Hahn Decompositions of Non-additive Set Function
下载PDF
导出
摘要 经典测度论中所涉及到的集函数是满足可加性要求的,Hahn分解理论是很重要的定理.在去掉可加性的条件下,将经典测度论中的某些概念加以推广,得到相应的结果.同时,也为经典可加测度的Hahn分解定理提供了更加清晰的证明方法. As we know ,classical (signed) measure is a set function which is additive. Hahn decomposition theorem is very important. Some concepts for classical (signed) measure are generalized without additivity, and the corresponding results are made. At the same time, this paper provides a clearer proof method for classical additive measure.
作者 田延芬
出处 《湖北民族学院学报(自然科学版)》 CAS 2006年第2期130-132,共3页 Journal of Hubei Minzu University(Natural Science Edition)
关键词 集函数 Hahn分解 修正单调 从下连续 零零可加 setfunction Hahn decomposition revised monotonieity continuity from below null - null additive
  • 相关文献

参考文献5

  • 1Halmos P R.Measure Theory[M].New York:Springer,1974.
  • 2张强,刘克.非可加集函数的Lebesgue分解[J].数学学报(中文版),2002,45(5):899-904. 被引量:1
  • 3Zhang Q.Further Discussion On the Hahn decomposition theorem for signed fuzzy measure[J].Fuzzy Sets ang Systerms,1995,70(1):89 ~95.
  • 4Liu Xuecheng.Hahn decomposition theorem for infinite signed fuzzy measure[J].Fuzzy Sets and Systerms,1993,57:377 ~380.
  • 5Zhang Q.Lebesgue decomposition theorem for finite signed fuzzy measures[J].Fuzzy Sets and Systerms,1999,101 (3):445 ~ 451.

二级参考文献7

  • 1Yan J., Lectures on the Measure Theory, Beijing: Science Press 1998 (in Chinese).
  • 2Pap E., Lebesgue and Saks decompositions of ⊥-decomposable measures, Fuzzy Sets and Systems, 1990, 38: 345-353.
  • 3Weber S., ⊥-decomposable measures and integrals for Archimedean t-conorm, J. Math. Anal. Appl., 1984,101: 114-138.
  • 4Jiang Q., Suzuki H., Lebesgue and Saks decompositions of σ-finite fuzzy measures, Fuzzy Sets and Systems, 1997, 75: 373-385.
  • 5Wang Z., The autocontinuity of set function and the fuzzy integral, J. Math. Anal. Appl., 1984, 99: 195-218.
  • 6Zhang Q., Xu Y., Du W., Lebesgue decomposition theorem for σ-finite signed fuzzy measures, Fuzzy Sets andSystems, 1999, 101(3): 445-451.
  • 7Zhang Q., Further discussion on the Hahn decomposition theorem for signed fuzzy measure, Fuzzy Sets and Systems, 1995, 70(1): 89-95.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部