摘要
引入并研究了由紧的距离空间(K,d)到Mm,n(F)中的Lipschitz-α映射构成的空间Lα(K,Mm,n(F))和lα(K,Mm,n(F));并证明了它们关于范数‖f‖α=‖f‖∞+Lα(f)是Lipschitz空间;得到了lα(K,Mm,n(F))是Lα(K,Mm,n(F))的闭子空间;当0<α≤β≤1时,Lβ(K,Mm,n(F))是Lα(K,Mm,n(F))的闭子空间.
Spaces, L^α(K,Mm,n(F)) and l^α(K,Mm,n(F)), constructed with Lipschitz-α mapped from a compact range space (K, d) to a matrix space Mm,n(F), are introduced and studied. It is proved that both of them are Lipschitz spaces in the norm ||·||α(||f||α=||f||∞+Lα(f)) ; l^α(K,Mm,n(F)) is a closed subspace of L^α(K,Mm,n(F)) ; and if 0〈α≤β≤1, then L^β(K,Mm,n(F)) is a closed subspace of L^α(K,Mm,n(F)).
出处
《西安文理学院学报(自然科学版)》
2006年第2期9-13,共5页
Journal of Xi’an University(Natural Science Edition)
基金
国家自然科学基金资助项目(10571113
19771056)
陕西省自然科学基金资助项目(2002A02)