期刊文献+

卫星自主导航中月亮摄动及其仿真研究

Simulation Study on Moon's Perturbation in Satellite Autonomous Navigation
下载PDF
导出
摘要 卫星自主导航是卫星控制技术发展的必然趋势,是当今世界航天领域研究的前沿热点之一。该文针对基于组合大视场星敏感器星光折射的卫星天文自主导航方法,应用广义卡尔曼滤波理论,建立了月亮引力摄动下的系统状态模型和系统观测模型。对系统模型进行了状态最优估计周围的线性化和采样周期的离散化,给出了干扰方程。在滤波计算过程中,采用了改进的广义卡尔曼滤波算法,以某地球同步轨道通信卫星为背景,进行了计算机仿真研究。分析和讨论了月亮摄动力对卫星自主导航的影响,给出了其影响的变化规律。研究和仿真结果表明,月亮引力是卫星自主导航的主要摄动因素之一,直接影响卫星轨道倾角的变化,并且卫星轨道越高,影响效果越明显。 Autonomous navigation for satellite is an inevitable trend and hotspot in the filed of spaceflight. In this paper, we set up observation model and state model of the system aiming at autonomous navigation for satellite by a combination sensor with large field of view and starlight refraction, applying extended Kalman filtering theory. Interferential equations are given after system models are transformed around optimization estimate of state to linearization and dispersed according to sampling period. Computer simulations are done based on certain earth synchronous communications satellite, and an improved extended Kalman filtering algorithm is adopted in course of f'dtering. We analyze and discuss moon's impacts on satellite, and give its change rule. Results of study and simulation show, the moon gravitation is among main perturbation factors in autonomous navigation for satellite, it has firsthand impact on obliquity change of satellite orbits, and the higher the orbitis, the more obvious impact effect.
出处 《计算机仿真》 CSCD 2006年第5期45-47,共3页 Computer Simulation
关键词 卫星自主导航 星光折射 月亮摄动 系统滤波模型 计算机仿真 Autonomous navigation for satellite Starlight refraction Moon's perturbation Filtering model of system Computer simulation
  • 相关文献

参考文献5

二级参考文献20

  • 1[1]Fesq L, et al. Spacecraft autonomy in the new millennium. In: Proc. of the Annual AAS Rocky Mountain Guidance and Control Conference, Breckenridge, Colorado, Feb. 7~ 11, 1996, AAS 96-001:3~20
  • 2[2]Chory M A, Hoffman DP, LeMay JL. Satellite Autonomous Navigation- Status and History. IEEE Position Location and Navigation Symposium, Las Vegas, NV, Nov. 4~ 7, 1986, 110~ 121
  • 3[3]Safivastava S. Autonomous stationkeeping system for the Lincoln experimental satellite (LES) 8 and 9. AIAA 84-1861: 188 ~ 196
  • 4[4]Chory M A, Hoffman D P, Major C S, Spector V A. Autonomous navigation - where we are in 1984. AIAA 84-1826:27 ~ 37
  • 5[5]Treder A J. Autonomous navigation - when will we have it? Navigation: Journal of The Institute of Navigation,1987, 34 (2): 93~ 114
  • 6[6]Berthias J P, Houry S. Next day precise orbits for TOPEX/Poseidon using DORIS. Proc. of the AAS/GSFC International Symposium of Space Flight Dynamics, Greenbelt, Maryland, May 11 - 15, 1998, AAS 98- 313:173 ~ 183
  • 7[7]Collins J T, Conger R E. MANS: Autonomous Navigation and Orbit Control for Communication Satellites. AIAA 94-1127-CP, 1994
  • 8[8]Tai F, Noerdlinger P D. A Low Cost Autonomous Navigation System. Proc. of the Annual AAS Guidance and Control Conference, Keystone, Colorado, Feb. 1989, AAS89-001:3 ~ 23
  • 9[9]Hosken R W, Wertz J R. Microcosm Autonomous Navigation System On - Orbit Operation. In: Proc. of the 18th Annual AAS Guidance and Control Conference, Keystone, Colorado, Feb. 1995, AAS 95-074:491 ~ 506
  • 10[10]Wertz J R. Implementing autonomous orbit control. Proceedings of the Annual AAS Guidance and Control Conference, Breckenridge, Colorado, Feb. 7~11, 1996, AAS 96-004:57~68

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部