期刊文献+

基于ART1神经网络的统计过程控制系统 被引量:2

A Quality Control System Based on ART1 Neural Network
下载PDF
导出
摘要 统计过程控制(SPC)在改进过程水品、提高产品质量方面作出了巨大贡献。本文讨论了一种基于自适应谐振理论(ART)神经网络的SPC系统。与一般SPC系统相比,本系统不仅可以在线检测过程异常,对各种控制图异常模式还具有实时学习、在线识别功能。同时,本系统对过程的分析,无需如常规控制图一样,建立在正态假设的前提下,因此应用更方便、范围更广泛。作为一种新的SPC工具,ART1神经网络为改进控制图的应用提供了一种新的可能。 This paper presents a statistical process control (SPC) system, which is based on the adaptive resonance theory (ART) neural network. Contrast to these common SPC systems, it can not only detect the unnatural process behavior on line, but can also learn and identify these unnatural patterns on control charts at the same time. And it does not require the assumption of normal distribution assumptions. As a new promising SPC tool, ART1 network proposes a possibility of improving the application of control charts.
作者 孙学静 刘飞
出处 《自动化技术与应用》 2006年第5期1-3,共3页 Techniques of Automation and Applications
关键词 SPC 质量控制 ART1 神经网络 控制图 模式识别 SPC quality control ART1 neural network control charts pattern recognition
  • 相关文献

参考文献7

  • 1Western Electric. Statistical quality control handbook[Z]. New York: Western Electric Company, 1958.
  • 2GUH, R.-S.; ZORRIASSATINE, F.; TANNOCK, J.D.T.; O'BRIEN, C. On-line control chart pattern detection and discrimination-a neural networks approach[J].Artificial Intelligence in Engineering, 1999, 13(4) : 413- 425.
  • 3CHENG, CHUEN-SHENG. A multi- layer neural network model for detecting changes in the process mean[ J ]. Computers & Industrial Engineering,1995, 28(1): 51-61.
  • 4GUH, R.-S.; TANNOCK, J.D.T.; O'BRIEN, C. INTELLISPC: a hybrid intelligent tool for on-line economical statistical process control[J]. Expert Svstenrs with Applications, 1999, 17(3): 195-212.
  • 5GUH,RUEY-SHY; HSIEH, YI-CHIH. A neural network based model for abnormal pattern recognition of control charts[ J ]. Computers & Industrial Engineering, 1999, 38(1): 97- 108.
  • 6AL-GHANIM, AMID. An unsupervised learning neural algorithm for identifying process behavior on control charts and a comparison with supervised learning approaches[ J ]. Computers & Industrial Engineering, 1997, 32 ( 3 ) : 627- 639.
  • 7PACELLA, MASSIMO; SEMERARO QUIRICO; ANGLANI ,ALFRE-DO. Manufacturing quality control by means of a Fuzzy ART network trained on natural process data Engineering [ J ]. Applications of Artificial Intelligence,2004, 17(1): 83-96.

同被引文献18

  • 1谭思云,李志明.基于FNN的水泥回转窑分解炉温度控制[J].控制工程,2003,10(z1):18-20. 被引量:4
  • 2徐秉德.预分解窑操作的体会(三)[J].水泥,2004(6):44-48. 被引量:2
  • 3覃守平.预分解窑操作要求的特点[J].水泥技术,2005(1):55-56. 被引量:3
  • 4张根富.新型干法窑中控操作要点及常见工艺故障处理[J].新世纪水泥导报,2005,11(3):30-35. 被引量:4
  • 5Wang T Y, Chert L H. Mean shifts detection and classification in multivariate process : a neural - fuzzy approach[ J ]. Journal of Intelligent Manufacturing, 2002, 13 : 211 - 221.
  • 6Chen L H, Wang T Y. Artificial neural networks to classify mean shifts from multivariate chart signals[ J ]. Computers and Industrial Engineering, 2004, 47 : 195 - 205.
  • 7Cheng C S. A multi - layer neural network model for detecting changes in the process mean[ J]. Computers and Industrial Engineering, 1995, 28(1) : 51 -61.
  • 8Low C, Hsu C M, Yu F J. Analysis of variations in a multivariate process using neural networks[J]. International Journal of Advanced Manufacturing Technology, 2003, 22:911 -921.
  • 9Zorriassatine F, Tannock J D T, O' Brien C. Using novelty detection to identify abnormalities causes by mean shifts in bivariate processes[J]. Computers and Industrial Engineering, 2003, 44:385 -408.
  • 10Hwarng H B, Hubele N F. X - bar control chart pattern identification through efficient off - line neural network training[ J ]. HE Transactions, 1993, 25:27-40.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部