摘要
将神经网络应用于定量构效关系研究。用改进的反传算法探讨了单胺氧化酶抑制剂N-(苯氧乙基)环丙胺取代衍生物的生物活性与取代基电子效应σ、疏水作用π、空间效应Es等参数之间的定量关系。给出了精密拟合和准确预测(最大误差均小于10%),优于经典的多元线性回归及逐步回归方法。作为一种有效的计量化学新方法,神经网络有良好的预测能力和非线性处理功能,从而可望在QSAR研究中发挥重要作用。
Neural networks(NN)methods were applied to quantitative structure-activity relationship(QSAR)studies.The relationship between biological activity(pC=pIC50)and electronic,hydrophobic and steric parameters and dumming index(sigma,pi,Es,was investigated by usingmodified backpropagation(MBP)neural networks.The biological activity of N-(substitutedphenoxyethyl)-cyclopropylamines derivative regression was estimated and predicted with relative errorless than 16%and with correct classification ratio being94.4%,The results obtained by thedeveloped NN(MBP)method seem to be better than those by multivariate regression(MR)and step-wise regression(SR).The NN(MBP)method was,therefore,regarded as an excellent chemometricmedeling technique for estimating and predicting biological activity on basis of chemical structure forQSAR studies。
出处
《药学学报》
CAS
CSCD
北大核心
1996年第1期38-42,共5页
Acta Pharmaceutica Sinica
基金
国家自然科学基金
国家教委回国人员基金
机械部科技基金
日本文部省资助项目
关键词
神经网络
构效关系
环丙胺类衍生物
药物设计
Neural networks
Chemometric
QSAR
N-(Substituted phenoxyethyl)-cyclopropy-lamines