摘要
组合学在诸多科学技术领域中有着重要的应用价值。介绍了组合学在抗干涉齿轮集(CMG:counter-meshing gears)机构的优化编码、传感器网络节点布设中的两类应用。在CMG机构的优化编码应用中,通过二维迷宫映射和其它数学建模步骤,将问题转化为图C(V,E)的k-顶点着色问题,并设计了CMG机构鉴别齿的编码及编码校验的组合学算法。关于传感器网络节点布设的应用,重点介绍了传感器网络中覆盖问题的物理意义。
Combinatorics is of very important application value in many science and technology field. Two applications are introduced: the optimal coding problem of the Counter Meshing Gears (CMG) mechanism, and the optimal deployment problem of sensor networks' node. To the CMG problem, by 2 - D maze mapping and other mathematical modeling steps, it can be transformed into the k - vertex coloring problem of graph G ( V, E). Combinatorics algorithms of the CMG discrimination teeth' s coding and code -verification program are also designed. To the sensor node deployment problem, physical meanings of the sensor networks' coverage problem are focused.
出处
《西南科技大学学报》
CAS
2006年第1期48-52,共5页
Journal of Southwest University of Science and Technology
基金
国防预研项目(41305010301
51305070402)。