期刊文献+

不可检结构可靠性分析 被引量:1

Fatigue Reliability Analysis of Uninspectable Structure
下载PDF
导出
摘要 航空器中总存在有不可检测结构,这些结构在使用中,无法进行检测,一般也不进行维修.本文给出了这种不可检结构的可靠性分析模型。 Chinese engineers are now quite interested in the model of fatigue reliability a-nalySis ofuninspectable portions of aircraft structure. We now present our preliminary results on oneaSpect of this important problem.Our model taxes into consideration the following random factors: initial life of crack,propagation life of crack, distribution of applied loading, distribution of fracture toughness,and variation of residual strength. For convenience of engineering application, the model isbased on eq. (1), the propagation rate of fatigue craek proposed by Yang et al[3]. Eq.(10), the distribution of the stress of harzard position due to gust loading proposed by Eggwertz [4], is adopted by us. Now harzard rate H (t), damage probability Pf(t) and reliability ps(t) at time t can be computed with eqs. (14), (15) and (16) respectively.We take, as numerical example, the reliability analysis of a tension apecimen with central crack under spectrum loading. Its harzard rate H (t) and damade probability Pf (t) areshown in Figs. 1 and 2 respectively.
机构地区 西北工业大学
出处 《西北工业大学学报》 EI CAS CSCD 北大核心 1996年第1期121-124,共4页 Journal of Northwestern Polytechnical University
基金 航空科学基金
关键词 疲劳 可靠性 裂纹扩展 航空器 不可检测结构 fatigue, reliability, crack propagation
  • 相关文献

参考文献4

  • 1林富甲,固体力学学报,1991年,12卷,10期,81页
  • 2Manning S D,1986年
  • 3田正非,1985年
  • 4Yang J N,J Aircraft,1983年,30卷,12期,1028页

同被引文献16

  • 1冯振宇,诸德培.高可靠性分析中分布函数的研究[J].强度与环境,1996,23(1):54-58. 被引量:3
  • 2冯振宇,高庆.可靠性模型的选择问题[J].西南交通大学学报,1996,31(3):238-241. 被引量:2
  • 3冯振宇,诸德培,林富甲.结构检查维修时疲劳裂纹尺寸的概率分布[J].机械科学与技术,1997,16(3):411-414. 被引量:1
  • 4[2]Smirnov N V.Table for estimating the goodness of fit of empirical distribution.Ann Math Stat,1948,19:279~281
  • 5[3]Lilliefors H W.On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown.J Amer Stat Assoc,1969,64: 387~389
  • 6[4]Lilliefors H W.On the Kolmogorov-Smirnov test for normality distribution with mean and variance unknown.J Amer Stat Assoc,1967,62: 399~402
  • 7[5]Woodruff B W,Viviano P J,et al.modified goodness-of-fit tests for Gamma distribution with unknown location and scale parameters.IEEE T.R.,1984;R-33(2) :241~246
  • 8[6]Feng Z Y,Zhu D P,Lin F J.Modified Goodness-of-fit Tests of Weibull Distribution With Unknown Parameters,In:Gao Z.Proceedings of the Asia-Pacific Conf on Strength of Materials and Structures,Beijing: International Academic Publishers,1996.91~94
  • 9[7]Z Feng,W Cui,D Zhu.The K Test of Normal Distribution.In:Zhu D.Progress in experimental and computational Mechanics in Engineering and Material Behavior,Xian :NPU press,1999.393~397
  • 10[9]Shimokawa T.Goodness-of-fit tests for type-Ⅰ extreme-value and 2-parameter Weibull distribution.IEEE T.R.,1999,48(1) :79~86

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部