摘要
研究了Sine-Gordon方程在广义渐近惯性流形上的常微分方程组(ODE)的混沌控制.引入时滞反馈控制到Sine-Gordon的ODE形式,使得对应的Melnikov函数不再为零.因此横截同宿轨道消失,即受控系统中的混沌运动被镇压.在一定的参数范围,原来的混沌吸引子中不稳定的周期轨道变为稳定的周期轨道.数值模拟结果表明了理论分析的正确性.
The control of chaos for ODE on the generalized approximate inertial manifold of Sine-Gordon equation was investigated. The introduction of time-delayed feedback control to the ODE of Sine-Gordon equation made the corresponding Melnikov function no longer be zero. In consequence, the homoclinic orbit disappeared, i.e. the chaotic motion in the controlled system was suppressed. For a certain range of parameters, the unstable periodic orbits in the chaotic attractor can be changed into the stable periodic orbits. The results of numerical simulation support the theoretical analysis.
出处
《江苏大学学报(自然科学版)》
EI
CAS
北大核心
2006年第3期274-278,共5页
Journal of Jiangsu University:Natural Science Edition
基金
国家自然科学基金资助项目(10372054)