期刊文献+

结构体系隐式极限状态方程概率分析的改进响应面法 被引量:5

ADVANCED RESPONSE SURFACE METHOD FOR THE FAILURE PROBABILITY OF COMPLEX STRUCTURE WITH MULTIPLE IMPLICIT LIMIT STATE EQUATIONS
下载PDF
导出
摘要 提出一种新的处理隐式极限状态方程概率安全分析的响应面法,在原响应面法的基础上,通过引入高阶修正项和概率等效变换,建立原隐式极限状态方程的等效显式极限状态方程,以利用已有的各种针对显式极限状态方程的可靠性分析方法,得到等效显式极限状态方程的失效概率。该方法被推广应用到所有极限状态方程均为隐式的结构体系的可靠性分析中去,依次建立每个失效模式的等效极限状态方程,并采用MonteCarlo法和重要抽样法计算具有多个极限状态方程的结构体系的失效概率。算例表明,文中方法不用差分方法计算隐式极限状态对基本随机变量的导数,适于解决隐函数的概率可靠性分析问题,由于采用了高阶项的修正,能够得到更高精度的结果。 An advanced response surface method is presented for implicit limit state equation. Based on the conventional response surface method, the higher order correction and equivalent probability transform are considered in the advanced response surface method. The equivalent explicit limit state equation can be established by the advanced response surface method so that the available reliability analysis method for explicit limit state can be used. The advanced surface response method can be extended to the complex structure with multiple implicit limit state equations. After the equivalent explicit limit state is established for every implicit limit state equation in the complex structure, Monte Carlo method and the extended importance sampling method can be employed to calculate the structure system failure probability. Illustrative examples show that the gradient is avoided in the presented method, and the higher accuracy is attained by taking the correlation of the failure modes into consideration.
出处 《机械强度》 EI CAS CSCD 北大核心 2006年第3期358-362,共5页 Journal of Mechanical Strength
基金 国家自然科学基金(10572117) 航天基金(N3CH0502) 陕西省自然科学基金(N3CS0501)联合资助。~~
关键词 改进响应面法 隐式极限状态方程 重要抽样法 Advanced response surface method Implicit limit state equation Importance sampling method
  • 相关文献

参考文献23

  • 1Fiessler B,Neumann H J,Rackwitz R.Quadratic limit states in structural reliability.J.Engng.Mech.,ASCE,1979,105(4):661~676.
  • 2Kiureghian A D,Lin H Z,Hwang S J.Second order reliability approximations.J.Engng.Mech.,ASCE,1987,113(8):1 208~1 225.
  • 3Hohenbichler M,Rackwitz R.Improvement of second-order reliability estimates by importance sampling.J.Engng.Mech.,ASCE,1988,114(12):2 195~2 199.
  • 4Cai G Q,Elishakoff I.Refined second-order reliability analysis.Structural Safety,1994,14(4):267~276.
  • 5Zhao Y G,Ono T.New approximations from SORM:Part 1-2.J.Engng.Mech.,2000,125(1):79~93.
  • 6Melchers R E.Importance sampling in structural system.Structural Safety,1989,6(1):3~10.
  • 7Melchers R E.Search-based importance sampling.Structural Safety,1990,9(2):117~128.
  • 8Yaacob Ibrahim.Observations on applications of importance sampling in structural reliability analysis.Structural Safety,1991,9(4):269~281.
  • 9Pereira M V F,Pinto L M V G.A new computational tool for composite reliability evaluation.IEEE Trans on Power Systems,1992,7(1):258~264.
  • 10Ziha K.Descriptive sampling in structural safety.Structural Safety,1995,17(1):33~41.

二级参考文献8

  • 1吕震宙,冯元生.重要抽样法在工程可靠性分析问题中的应用[J].机械强度,1997,19(1):33-36. 被引量:12
  • 2茆诗松 王静龙 濮晓龙.高等数理统计[M].北京:高等教育出版社,施普林格出版社,2000..
  • 3吕震宙,博士学位论文,1993年
  • 4杨为民,系统可靠性数字仿真,1990年
  • 5吕震宙,博士学位论文,1993年
  • 6徐钟济,蒙特卡罗方法,1985年
  • 7中国科学院计算中心,概率统计计算,1979年
  • 8YAACOB. Observations on applications of importance sampling in structural reliability analysis[J]. Structural Safety,1991(9):269-281.

共引文献15

同被引文献41

引证文献5

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部