摘要
提出了一种新颖的具有自构筑能力的神经网络结构,称之为Modular-tree和两个相应的自构筑算法。在此结构中,任何现存的前馈神经网络均可以作为子网。对于一个给定的学习任务,利用提出的生成算法通过对输入空间递归地划分,自动生成一树状的模块神经网络,从而避免了网络结构预置问题。由于使用了“分治”原理,Modular-tree具有良好的性能及快速训练的能力。此结构已用于多个监督学习问题(包括:标准测试及现实世界问题)并取得令人满意的实验结果。
Presented a novel self-architecure modular neural network architecture,called modular-tree for supervised learning.In the architecture,any kind of feedforward neural networks can beemployed as componenets and a modular neural network with the tree structure is generated auto-matically with a growing algorithm by partitioning input space recursively to avoid the problem ofpre-determined structure.Due to the principle of divide-and-conquer used in the proposed architec-ture,the modular-tree can yield both a good performance and significantly fast training.The pro-posed architecture has been applied to several supervised learning tasks including both benchmarkand real-world problems and achieved satisfactory results.
出处
《北京大学学报(自然科学版)》
CAS
CSCD
北大核心
1996年第1期110-119,共10页
Acta Scientiarum Naturalium Universitatis Pekinensis
基金
国家自然科学基金
国家科委攀登计划资助项目
关键词
模块神经网络
自构筑
监督学习
modular neural networks
self-architecture
supervised learning