期刊文献+

氟代糖在糖苷酶研究中的应用 被引量:3

Application of Glycosyl Fluorides in the Study on Glycosidases
下载PDF
导出
摘要 近年来,氟代糖应用于糖苷酶反应研究,显示出越来越重要的作用。氟代糖可以作为糖苷酶及其突变酶的水解底物研究酶学性质;氟代糖抑制剂可以标记糖苷酶催化中心,鉴定亲核体氨基酸。尤为重要的是,氟代糖可作为糖苷酶的糖基供体来合成糖类。糖苷酶突变后,可生成糖苷合成酶和硫代糖苷合成酶,可以用与正常底物构型相反的氟代糖作为糖基供体高效合成糖类,收率一般为60%-90%,有的可达100%。糖苷酶及其突变酶以氟代糖为底物高效合成糖类的研究,必将促进生物学、糖生物学和纳米生物材料的发展。 Glycosyl fluorides are becoming increasingly important molecules for the study on glycosidases. Firstly, glycosyl fluorides act as substrates for glycosidases hydrolysis. Scecondly, the installation of fluorine elsewhere on the carbohydrate ring modifies the properties of the glycosyl fluoride so that the resultant compounds act as mechanism-based inhibitors to label enzymes in the active site, allowing identification of the catalytic nucleophile. Furthermore, glycosyl fluorides also act as donors for transglycosylation by retaining glycosides. Finally, glycosyl fluorides of the wrong anomeric configuration could be used by retaining glycosidase mutants such as glycosynthases and thioglycosynthases to synthesize carbohydrate with high yields( normally 60% ~ 90%). Fundamental and applied research in biology, glycobiology and nanobiotechnology would benefit from the possibility of synthesizing tailor-made oligo-/poly-saccharides.
出处 《生物工程学报》 CAS CSCD 北大核心 2006年第3期351-360,共10页 Chinese Journal of Biotechnology
基金 国家自然科学基金(No.30170008) 国家"十五"攻关计划项目(No.2004BA713B04-06)~~
关键词 氟代糖 糖苷酶 抑制剂 糖类合成 糖苷合成酶 硫代糖苷合成酶 glycosyl fluorides, glycosidases, mechanism-based inhibitors, carbohydrate synthesis, glycosynthases,thioglycosynthases
  • 相关文献

参考文献49

  • 1Daines AM, Maltman BA, Flitsch SL. Synthesis and modifications of carbohydrates using biotransformations. Curr Opiu Chem Biol,2004, 8(2):106- 113
  • 2McCarter JD, Withers SG. Mechanisms of enzymatic glycoside hydrolysis. Curt Opin Struct Biol, 1994, 4(6) :885 - 892
  • 3Brayer GD, Sidhu G, Maurus R et al. Subsite mapping of the human pancreatic alpha-amylase active site through structural,kinetic, and mutagenesis techniques. Biochemistry, 2000, 39(16):4778 - 4791
  • 4Konstantinidis A, Sinnott ML. The interaction of 1-fluoro-D-glucopyranosyl fluoride with glucosidases. Biochem J, 1991, 279(Pt 2) :587 - 593
  • 5Hehre EJ, Brewer CF, Genghof DS. Scope and mechanism of earbohydrase action. Hydrolytic and on hydrolytic actions of betaamylase on alpha- and beta-maltosyl fluoride. J Bid Chem, 1979,254(13) :5942 - 5950
  • 6Kasumi T, Tsumuraya Y, Brewer CF et al. Catalytic versatility of Bacillus pumilus beta-xylosidase: glycosyl transfer and hydrolysis pronoted with alpha-and beta-D-xylosyl fluoride. Biochemistry,1987, 26(11):3010 - 3016
  • 7Hehre EJ, Matsui H, Brewer CF. Hydrolysis of beta-D-glueopyranosyl fluoride to alpha-D-glucose catalyzed by Aspergillus nuger alpha-D-glucosidase. Carbohydr Res, 1990, 198(1):123 -132
  • 8Withers SG, Street IP, Bird Pet al. 2-Deoxy-2-fluoro-glueosides:A novel class of mechanism-based glueosidase inhibitors. J Amer Chem Soc, 1987, 109(24) :7530 - 7531
  • 9Withers SG, Rupitz K, Street IP. 2-Deoxy-2-fluoro-D-glyeosyl fluorides. A new class of specific mechanlsm-based glycosidase inhibitors. J Biol Chem. 1988, 263(17) :7929 - 7932
  • 10McCarter JD, Adam MJ, Hartman NG et al. In vivo inhibition of beta-glucosidase and beta-mannosidase activity in rats by 2-deoxy-2-fluoro-beta-glycosyl fluorides and recovery of activity in vivo and in vitro. Biochem J. 1994, 301(Pt 2):343- 348

二级参考文献36

  • 1Ichikawa Y, Look GC, Wong CH. Enzyme-catalyzed oligosaccharide synthesis. Anal Biochem, 1992, 202: 215 - 238.
  • 2He XY, Zhang SZ, Yang SJ. Cloning and expression of a thermostable β-glycosidase Gene from thermus nonproteolyticus HG 102 and haracterization of the recombinant enzyme. Applied Biochemistry and Biotechnology, 2002,94(3): 243- 255.
  • 3Wang XQ, He XY, Yang SJ et al. Structural basis for thermostability of beta-glycosidase from the thermophilic enbacterium thermos nonproteolyticus HG102. Journal of Bacteriology, 2003, 185(14):4248 - 4255.
  • 4Hocker B, Jürgens C, Wilmanns M et al. Stability, catalytic versatility and evolution of the (βα) 8-barrel fold. Current Opinion in Biotechnology, 2001, 12: 376 - 381.
  • 5Watt GM, Lowden PAS, Flitsch SL. Enzyme-catalyzed formation of glycosidic linkages. Curr Opin Struct Biol, 1997, 7: 652- 660.
  • 6Elling L. Glycobiotechnology: enzymes for the synthesis of nucleotide sugars. Adv Biochem Eng Biotechnol, 1997, 58:89 - 144.
  • 7Mackenzie LF, Wang Q, Warren RAJ et al. Glycosynthases-mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc, 1998,120:5583 - 5584.
  • 8Schwede T, Kopp J, Guex N et al. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 2003,31:3381 - 3385.
  • 9Guex N, Peitsch MC. SWISS-MODEL and the Swiss-Pdb Viewer:An environment for comparative protein modeling. Electrophoresis,1997, 18: 2714- 2723.
  • 10Peitsch MC. Protein modeling by E-mail. Bio/Technology, 1995,13:658-660.

共引文献5

同被引文献40

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部