摘要
A computational efficient wideband Direction of Arrival (DOA) estimation method in the presence of unknown correlated noise is presented. A fast Two-sided Correlation Transformation (TCT) focusing matrix that transforms only the signal subspace is developed firstly, and then the propagator method is utilized to compute the focusing matrix and noise correlation matrix. In contrast to conventional wideband DOA estimation method, the proposed method requires only linear operation but does not involve any eigenvelue-decomposition to estimate the focusing matrix; it has a lower computational load, especially when the sensor number is greater than the source number. Because noise correlation matrix is estimated and eliminated from the array correlation matrix, the accuracy of DOA estimation is improved even in the presence of unknown correlation noise. Computer simulation results verified the efficiency of the method.
A computational efficient wideband Direction of Arrival (DOA) estimation method in the presence of unknown correlated noise is presented. A fast Two-sided Correlation Transformation (TCT) focusing matrix that transforms only the signal subspace is developed firstly, and then the propagator method is utilized to compute the focusing matrix and noise correlation matrix. In contrast to conventional wideband DOA estimation method, the proposed method requires only linear operation but does not involve any eigenvelue-decomposition to estimate the focusing matrix; it has a lower computational load, especially when the sensor number is greater than the source number. Because noise correlation matrix is estimated and eliminated from the array correlation matrix, the accuracy of DOA estimation is improved even in the presence of unknown correlation noise. Computer simulation results verified the efficiency of the method.