摘要
In this paper we propose a two-layer emergent model for scalable swarm system. The first layer describes the indi-vidual flocking behavior to the local goal position (the center of minimal circumcircle decided by the neighbors in the positive visual set of individuals) resulting from the individual motion to one or two farthest neighbors in its positive visual set; the second layer describes the emergent aggregating swarm behavior resulting from the individual motion to its local goal position. The scale of the swarm will not be limited because only local individual information is used for modelling in the two-layer topology. We study the stability properties of the swarm emergent behavior based on Lyapunov stability theory. Simulations showed that the swarm system can converge to goal regions while maintaining cohesiveness.
In this paper we propose a two-layer emergent model for scalable swarm system. The first layer describes the individual flocking behavior to the local goal position (the center of minimal circumcircle decided by the neighbors in the positive visual set of individuals) resulting from the individual motion to one or two farthest neighbors in its positive visual set; the second layer describes the emergent aggregating swarm behavior resulting from the individual motion to its local goal position. The scale of the swarm will not be limited because only local individual information is used for modelling in the two-layer topology. We study the stability properties of the swarm emergent behavior based on Lyapunov stability theory. Simulations showed that the swarm system can converge to goal regions while maintaining cohesiveness.
基金
Project (No. 60574088) supported by the National Natural ScienceFoundation of China