期刊文献+

晶格失配对超晶格法向导热系数影响的分子动力学模拟

Molecular dynamics simulation of the influence of lattice mismatch on cross-plane superlattice thermal conductivity
下载PDF
导出
摘要 采用非平衡态分子动力学方法模拟了超晶格的法向导热系数随周期长度的变化关系.模拟结果表明,在晶格匹配的超晶格中,当周期长度同声子平均自由程相当时,超晶格导热系数将出现最小值.而对于具有4%晶格失配的超晶格模拟结果却表明,超晶格导热系数随周期长度的增大而单调上升.这一研究结果表明,材料的晶格失配是大多数实验研究中没有发现超晶格最小导热系数的主要原因. The dependence of superlattice thermal conductivity on period length is investigated by nonequilibrium molecular dynamics simulation. For perfectly lattice-matched superlattices, a minimum thermal conductivity is observed when the period length is of the order of the effective phonon mean free path. However, the simulation results of the superlattice with 4% lattice mismatch show that the thermal conductivity increases monotonically with the period length. These results indicate that lattice mismatch is the main reason why minimum thermal conductivity has not been observed in a large number of experimental studies.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第3期427-430,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(50475077 50506008) 江苏省自然科学基金资助项目(BK2005063)
关键词 导热系数 超晶格 晶格失配 分子动力学 thermal conductivity superlattice lattice mismatch molecular dynamics
  • 相关文献

参考文献17

  • 1Balandin A A.Nanoscale thermal management[J].IEEE Potentials,2002,21 (1):11-15.
  • 2Packan P A.Pushing the limits[J].Science,1999,285 (5436):2079-2081.
  • 3过增元.国际传热研究前沿──微细尺度传热[J].力学进展,2000,30(1):1-6. 被引量:156
  • 4Mahan G,Sales B,Sharp J.Thermoelectric materials:new approaches to an old problem[J].Physics Today,1997,50(3):42 -47.
  • 5Hicks L D,Dresselhaus M S.Effect of quantum-well structures on the thermoelectric figure of merit[J].Physical Review B,1993,47(19):12727-12731.
  • 6Capinski W S,Maris H J.Improved apparatus for picosecond pump-and-probe optical measurements[J].Review of Scientific Instruments,1996,67 (8):2720 -2726.
  • 7Capinski W S,Cardona M,Katzer D S.Thermal conductivity of GaAs/AlAs superlattices[J].Physica B,1999,263-264:530-532.
  • 8Huxtable S T,Abramson A R,Tien Chang-Lin.Thermal conductivity of Si/Ge and SiGe/SiGe superlattices[J].Applied Physics Letters,2002,80(10):1737 -1739.
  • 9Venkatasubramanian R.Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures[J].Physical Review B,2000,61(4):3091 -3097.
  • 10Daly B C,Maris H J,Imamura K.Molecular dynamics calculation of thermal conductivity of superlattices[J].Physical Review B,2002,66(2):024301 (1 -7).

二级参考文献20

  • 1杨莉亚.信息化环境下中小学生综合素质评价指标体系构建[J].课程教育研究,2020,0(3):14-15. 被引量:4
  • 2李国莉.浅析罪错未成年人教育矫治分级体系的构建[J].法制博览,2019,0(36):72-73. 被引量:2
  • 3Chen G, Shakouri A. Heat transfer in nanostructures for solid-state energy conversion [ J ]. Journal of Heat Transfer,2002, 124:242 - 252.
  • 4Balandin A A. Nanoscale thermal management[J]. IEEE Potentials, 2002, 21: 11-15.
  • 5Chou F C, Lukes J R, Liang X G, et al. Molecular dynamics in microscale thermophysical engineering [J]. Annual Review of Heat Transfer, 1999,10:141 - 176.
  • 6Kaburaki H, Li J, Sidney Yip. Thermal conductivity of solid argon by classical molecular dynamics [J]. Materials Research Society Symposium Proceeding, 1998, 538: 503-508.
  • 7Lukes J R, Li D Y, Liang X G, et al. Molecular dynamics study of solid thin-film thermal conductivity [ J ]. Journal of Heat Transfer, 2000, 122:536 - 543.
  • 8Allen M P, Tildesley D J. Computer simulation of liquids[M]. Oxford: Clarendon Press, 1987. 9-50.
  • 9Rapaport D C. The art of molecular dynamics simulation[M]. Cambridge: University Press, 1995.50-118.
  • 10Mountain R D, MacDonald R A. Thermal conductivity of crystals: a molecular--dynamics study of heat flow in a two-dimensional crystal [ J ]. Physical Review B, 1983,28:3022-3025.

共引文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部