摘要
以玉米籽粒的粉末样品为例,对噪声较高近红外光谱分析仪进行近红外分析的可行性进行了分析。结果表明,采用四次平均光谱,不采取其他数据处理,使用PLS算法,自编软件CAU-NIR可以得到很好的预测模型。通过与其他噪声较低近红外分析仪预测结果的对比,噪声较高的光栅型近红外光谱分析仪预测样品的相关系数高达98%,变异系数为6·2%。因此当近红外光谱分析仪器的信噪比低于105时,借助一定的软件技术,仍然可以用于定量分析。
The feasibility of using a relatively high noise NIR spectrometer for analysis was examined by using maize powder samples. The results showed that with four-time averaged NIR spectrum data without more pretreatments, PLS mathematic models and CAU-NIR software, the relative high noise scan NIR spectrometer could be used to get satisfied prediction results compared with other low noise NIR spectrometers. The prediction coefficient could reach 98% and the CV(variation coefficient) was 6. 2%. It was proved that when the S/N of NIR spectrometer was lower than 10^5, it still could be used for quantity analysis with the help of some mathematic pretreatments and models.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2006年第5期842-845,共4页
Spectroscopy and Spectral Analysis
基金
国家高技术研究发展计划("863"计划)项目(2002AA243011)
国家科技攻关计划课题(2004BA210A03)资助
关键词
近红外光谱
噪声
数学处理
数学算法
Near infrared spectroscopy
Noise
Mathematic pretreatment
Mathematic models