期刊文献+

智能仿生人工腿步速测量系统硬件研究与设计

Study and Design of Walking Speed Measurement System of CIP-I Intelligent Bionic Artificial Leg
下载PDF
导出
摘要 CIP—I Leg是国内首个智能仿生人工腿原型机。本文首先介绍了CIP—I Leg的基本结构,给出了实物照片和三维CAD视图,然后重点介绍了该人工腿步速测量系统的设计方案,包括步速调整原理、控制系统结构、针阀开度值的设置方法、以及步速测量系统硬件和软件设计等。文中,我们提出了一种新的步速测量方法,即通过测量人工腿一个完整的步行周期,用步行周期的长短来反映步行速度的快慢。在硬件电路设计中,我们采用了美国Allegro公司的A3144EUA开关型霍尔传感器和TI公司的MSP430F149微处理器。微处理器用来处理霍尔传感器的信号并计算出步行周期值。实验结果表明,所设计的步速测量系统精度高,实时性好,功耗低,能非常可靠地检测出CIP-I Leg的步行速度。 CIP-I Leg is the first prototype of intelligent bionic artificial leg designed by Chinese researchers. This paper mainly deals with the walking speed measurement of the leg. First we introduce the basic structure of CIP-I Leg and present its photo and three-dimensional CAD figure. Then, we introduce its walking speed measurement scheme in detail, including the walking speed adjustment principle, the control system structure, the method for opening setting of the throttle valve, and the hardware and software design of the system. In this paper, we propose a new measurement method for the walking speed, that is, we measure the time that the leg takes during a walking period. Apparently, this time can reflect the walking speed, In the hardware circuit design, we adopted an A3144EUA Hall sensor and a MSP430FI49 microprocessor, The microprocessor is used to process the signal from the Hall sensor and compute the time of a walking period. The result of experiments indicated that this walking speed measurement System has high accuracy, low energy consumption, and good real-time characteristic, and is reliable to measuring the walking speed of CIP-I Leg.
作者 徐雄 谭冠政
出处 《可编程控制器与工厂自动化(PLC FA)》 2006年第5期113-116,136,共5页 Programmable controller & Factory Automation(PLC & FA)
基金 国家自然科学基金(No.50275150) 中国科学院机器人学开放研究实验室基金(No.RL200002)资助项目。
关键词 CIP-I LEG 步速测量 霍尔传感器 MSP430F149微处理器 实时检测 CIP-I Leg Walking speed measurement Hail sensor MSP430F149 microprocessor Real-time measurement
  • 相关文献

参考文献1

二级参考文献8

  • 1[1]Gailey R S et al. The Effects of Prosthesis Mass on Metabolic Cost of Ambulation in Non-vascular Trans-tibial Amputees. Prosthetics and Orthotics International, 1997,21:9-16
  • 2[9]Postema K et al. Energy Storage and Release of Prosthetic Feet. Part 1: Biomechanical Analysis Related to User Benefits. Prosthetics ad Orthotics International, 1997, 21:17-27.
  • 3[10]Multiaxial Dynamic Response Foot. Journal of Prosthetics and Orthotics, 1998,10(1):29A
  • 4[13]Datta D, Howitt J. Conventional Versus Microchip Controlled Pneumatic Swing Phase Control for Trans-femoral Amputees: User's verdict. Prosthetics and Orthotics International, 1998, 22:129-135
  • 5[15]Kirker S et al. An Assessment of the Intellignet Knee Prosthesis. Clinical Rehabilitation, 1996,10:267-273
  • 6[16]Dingwell J B et al. Use of an Anstrumented Treadmill for Real-time Gait Symmetry Evaluation and Feedback in Normal and Trans-tibial Amputee Subjects. Prosthetics and Orthotics International, 1996,20:101-110
  • 7[17]Pitkin M R. Synthesis of a Cycloidal Mechanism of the Prosthetic Ankle. Prosthetics and Orthotics International, 1996,20:159-171
  • 8[18]Blumentritt S. A New Biomechanical Method for Determination of Static Prosthetic Alignment. Prosthetics and Orthotics International, 1997,21:107-113

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部