1[1]Wei D,Tian J,Well R et al. A new class of biorthogonal wavelet sy stems for image transform coding. IEEE Trans. Image Processing,1998,7(7):1000~10 13.
2[2]Kim H, Li C C. Lossless and lossy image compression using biorthogonal wavele t transforms with multipierlss operations. IEEE Trans. Circuit and Systems II:An alog and Digital Signal Processing, 1998,45(8):1113~1118.
3[3]Said A,Pearlman W A. A new,fast,and efficient image codec based on set partit ioning in hierar-chical trees. IEEE Trans. Circuit and System for Video Technol ogy,1996,6(3):243~249.
4[4]Shapiro J M. Embedded image coding using zerotree of wavelet coefficients. IE EE Trans. on Signal Processing, 1993,41(12):3445~3462.
5Cohen A., Daubechies A., A new technique to estimate the regularity of refinable functions, Rev. Math.Iberoamericana, 1996, 12: 527-591.
6Jia R. Q., Characterization of smoothness of multivariate refinable functions in Sobolev spaces, Trans. Amer.Math. Soc., 1999, 351: 4089-4112.
7Daubechies I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 1988, 41: 909-996.
8Daubechies Ⅰ., Lagarias J. C., Two-scale difference equations Ⅱ. Local regularity, Infinite products matricesand fractals, SIAM J. Anal., 1992, 23(4): 1031-1079.
9Eirola T., Sobolev characterization of solutions of dilation equations, SIAM J. Math. Anal., 1992, 23(4):1015-1030.
10Rioul O., Simple regularity criteria for subdivision schemes, SIAM J. Math. Anal., 1992, 23(6): 1544-1576.