摘要
对给定的黎曼流形(M,g),此文在其标架丛F(M)上引入可以在纤维方向伸缩的度量,并研究其Levi-Civita联络和对应的曲率.本文证明了F(M)上的典型标架场是测地向量场.在M是齐性空间时,F(M)也是齐性空间.F(M)上曲率的一般公式还被用来显式表示O(n+1)上Jensen的非标准Einstein度量.
For a given Riemannian manifold (M, g), we introduce a scaling Riemannian metric on the orthonormal frame bundle F(M) of M and then study the Levi- Civita connection and curvatures of F(M) endowed with the metric. It turns out that F(M) is homogeneous Riemannian space when the underlying Riemannian manifold M is homogeneous. Furthermore the canonical vector fields are invariant under a transitive subgroup of the isometric group of F(M), which makes them more or less like the left invariant vector fields of a Lie group endowed with a left invariant metric. We use the expression of the curvatures of F(M) to explicitly express Jensen's non-standard Einstein metric on O(n + 1) (n ≥3).
出处
《南京大学学报(数学半年刊)》
CAS
2006年第1期70-78,共9页
Journal of Nanjing University(Mathematical Biquarterly)
基金
Partially supported by the grant NJU 0203004102 and 0203133027.