期刊文献+

一类新的齐性空间及O(n+1)上的Einstein度量(英文)

A NEW TYPE OF HOMOGENEOUS SPACES AND THE EINSTEIN METRICS ON O(n+1)
下载PDF
导出
摘要 对给定的黎曼流形(M,g),此文在其标架丛F(M)上引入可以在纤维方向伸缩的度量,并研究其Levi-Civita联络和对应的曲率.本文证明了F(M)上的典型标架场是测地向量场.在M是齐性空间时,F(M)也是齐性空间.F(M)上曲率的一般公式还被用来显式表示O(n+1)上Jensen的非标准Einstein度量. For a given Riemannian manifold (M, g), we introduce a scaling Riemannian metric on the orthonormal frame bundle F(M) of M and then study the Levi- Civita connection and curvatures of F(M) endowed with the metric. It turns out that F(M) is homogeneous Riemannian space when the underlying Riemannian manifold M is homogeneous. Furthermore the canonical vector fields are invariant under a transitive subgroup of the isometric group of F(M), which makes them more or less like the left invariant vector fields of a Lie group endowed with a left invariant metric. We use the expression of the curvatures of F(M) to explicitly express Jensen's non-standard Einstein metric on O(n + 1) (n ≥3).
作者 邹晓溶
出处 《南京大学学报(数学半年刊)》 CAS 2006年第1期70-78,共9页 Journal of Nanjing University(Mathematical Biquarterly)
基金 Partially supported by the grant NJU 0203004102 and 0203133027.
关键词 标架丛 EINSTEIN度量 齐性空间 正交群O(n+1) frame bundle, Einstein manifold, homogeneous spaces, orthogonal group O(n + 1)
  • 相关文献

参考文献15

  • 1Alekseevsky D V, Dotti I and Ferraris C. Homogeneous Ricci Positive 5-manifolds. Pacific J. Math.,1996, 175: 1-12.
  • 2Besse A. Differential Geometry. Springer-Verlag, 1987.
  • 3Griffiths P. On Cartan's Method of Lie Groups and Moving Frames as Applied to Uniquness and Existence Questions in Differential Geometry. Duke Math. J., 1974, 41: 775-814.
  • 4Helgason S. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, Inc., 1978.
  • 5Jensen G. Homogeneous Einstein Spaces of Dimension 4. J. Diff. Geom, 1969, 3: 309-349.
  • 6Jensen G. The Scalar Curvature of Left Invariant Riemannian Metrics. Indiana Univ. Math. J.,1971, 20: 1125-1143.
  • 7Yu G, Nikonorov and Rodionov E D. Compact Homogeneous Einstein 6-manifolds. Diff. Geom.Appl., 2003,19: 369-378.
  • 8Rodionov E D. Einstein Metrics on Even-dimensional Homogeneous Spaces, which Admits a Homogeneous Metric of Positive Sectional Cruvature. Siberian Math. J., 1991, 32: 126-131.
  • 9Rodionov E D. Simply Connected Compact Five-dimensional Homogeneous Einstein Manifolds.Siberian Math. J., 1994, 35: 163-168.
  • 10Gonzalez-Davila J C and Vanhecke L. Energy and Volume of Unit Vector Fields on Three-dimensional Riemannian Manifolds. Diff. Geom. Appl., 2002, 16: 225-244.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部