期刊文献+

矩阵方程AXA^T+BYB^T+AZB^T=D与矩阵方程AXA^T+AZB^T+BZ^TA^T=D的极小范数解(英文) 被引量:1

THE MINIMUM NORM SOLUTIONS OF MATRIX EQUATIONS AXA^T + BYB^T + AZB^T = D AND AXA^T + AZB^T + BZ^TA^T = D
下载PDF
导出
摘要 给定A∈Rm×n,B∈Rm×p,D∈Rm×m,设S1={(X,Y,Z)∈SRn×n×SRp×p×Rn×p|AXAT+BYBT+AZBT=D}, S2={(X,Z)∈SRn×n×Rn×p|AXAT+AZBT+BZTAT=D},求(X,Y,Z)∈S1使得‖X‖2+‖Y‖2+‖Z‖2=min及(X,Z)∈S2使得‖2‖2+‖2‖2=min.本文运用矩阵对(A,B)的广义奇异值分解给出了集合S1,S2非空的充分必要条件及X,Y,Z的显式表示. Given A∈R^m×n,B∈Rm×p,D∈R^m×m,and let S1={(X,Y,Z)∈Sr^n×n×SR^p×p×R^n×p|AXA^T+BYB^T+AZB^T=D},S2={(X,Z)∈SR^n×n×R^n×p|AXA^T+AZB^T+BZ^TA^T=D}.Find (X,Y,Z)∈S1 such that ||X||^2+||Y||^2+||Z||^2=min and find (X,Z)∈S2 such that ||X||^2+||Z||^2=min.By applying the generalized singular value decomposition (GSVD) of the matrix pair (A, B), the necessary and sufficient conditions under which 81,82 are nonempty are given. The explicit expressions of X,Y,Z are presented.
作者 袁永新 刘暤
出处 《南京大学学报(数学半年刊)》 CAS 2006年第1期79-87,共9页 Journal of Nanjing University(Mathematical Biquarterly)
关键词 矩阵方程 极小范数解 最佳逼近 matrix equation, minimum norm solution, optimal approximation
  • 相关文献

参考文献2

二级参考文献1

共引文献22

同被引文献7

  • 1廖安平,白中治.矩阵方程AXA^T+BYB^T=C的对称与反对称最小范数最小二乘解[J].计算数学,2005,27(1):81-95. 被引量:20
  • 2Chang Xiaowen, Wang Jiasong. The symmetric solution of the matrix equations AX + YA = C, AXAT + BYBT = C, and ( ATXA, Bz XB) = ( C, D ) [ J ]. Linear Algebra Appl, 1993,179:171-189.
  • 3Shim S Y, Chen Y. Least squares solution of Matrix equation AXB * + CYD * = E[ J ]. SIAM Journal on Matrix Analysis and Ap- plication,2003,24 ( 3 ) : 802-808.
  • 4Dai Hua. On the symmetric solutions of linear matrix equations [ J]. Linear Algebra Appl, 1990,131:1-7.
  • 5Xu Guiping, Wei Musheng, Zheng Daosheng. On solutions of Matrix equation AXB + CYD = F [ J ]. Linear Algebra Appl, 1998, 279:93-109.
  • 6Dai Hua,Lancaster P. Linear Matrix equations from all inverse problem of vibration theory[J]. Linear Algebra Appl ,1996,246: 31-47.
  • 7周婷,郭文彬.H-矩阵及其比较矩阵的预条件Gauss-Seidel法的收敛性[J].烟台大学学报(自然科学与工程版),2011,24(4):260-263. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部