期刊文献+

用Lagrangian水体位移元求解坝体与库水的动力耦合问题 被引量:3

The Use of Lagrangian Displacement Type Fluid Element to Dam-Reservoir Dynamic Interaction Analysis
下载PDF
导出
摘要 从水体基本方程出发,建立Lagrangian水体位移有限元支配方程,推导了水体位移元的基本计算公式,并对平面9结点水体位移元的自振特性和数值积分进行了深入研究,在单元劲度公式中采用降阶积分技术和引进旋转约束系数等消除全部不需要的零能振型.最后,对Koyina重力坝进行了地震响应分析。 On the basis of the basic equation, the goverming equation of lagrangiandisplacement type fluid finite element is established basic calculation formulas are deduced.A deep study of natural vibration of nine-node plain displacement element of water and itsnumerical integration is made. The use of reduced integration techniques to the elementstiffness and the introduction of rotation constraints eliminate all unnecessary zero-energymodes. Finally, seismic response analysis of Koyina gravity dam is conducted.
出处 《河海大学学报(自然科学版)》 CAS CSCD 1996年第2期14-20,共7页 Journal of Hohai University(Natural Sciences)
关键词 重力坝 水体位移 动力耦合 地震响应 gravity dam displacement fluid element dam-reservoir dynamic interaction earthquke response
  • 相关文献

参考文献4

  • 1陈和群,有限元法微机程序与图形处理,1992年
  • 2王勖成,有限单元法基本原理与数值方法,1988年
  • 3陈和群,华东水利学院学报,1984年
  • 4团体著者,弹性力学问题的有限单元法,1978年

同被引文献16

  • 1陈厚群,侯顺载,杨大伟.地震条件下拱坝库水相互作用的试验研究[J].水利学报,1989,21(7):29-39. 被引量:44
  • 2石建军,孙冰,周元德,张楚汉.不同横缝接触与库水模型对拱坝动力反应的影响[J].水力发电学报,2005,24(3):34-38. 被引量:11
  • 3WESTERGAARD H M. Water pressures on dams during eaahquakes [J]. Transcatiom, ASCE, 1933,98:418-472.
  • 4CLOUGH R W, CHANG K T,CHEN He-qun, et al. Dynamic interaction effects in arch dams:Earthquake Engineering Research Center Peport, No. UCB/EERC-85/11 [ R]. Berkeley: University of California, 1985.
  • 5CIDUGH R W. Reservoir interaction effects on the dynamic response of arch dams[ C]//Proceeding of China-US Bilateral Workshop on Earthquake Engineering. Beijing: Water Resource and Hydropower Press of China, 1982:58-84.
  • 6FOK K L, CHOPRA A K. Water compressibility in earthquake response of arch dams[J]. Journal of Structural Engineering, ASCE, 1987,113 (5) : 958-975.
  • 7WESTERGAARD H M. Water pressures on dams during earthquakes[J]. Transcations, ASCE, 1933,98:418-472.
  • 8CLOUGH R W. Reservoir interaction effects on the dynamic response of arch dams[ C ]//Proceeding of China-US Bilateral Workshop on Earthquake Engineering. Beijing: [s. n. ], 1982:58-84.
  • 9KATONA M G, ZIENKIEWICZ O C. A unified set of single-step algorithms, part3 : the beta-m method, a generalization of the Newmark scheme[J]. International Journal for Numerical Methods in Engineering, 1985(21 ):1345-1359.
  • 10SHARAN S K,GLADWELL G M L. A general method for the dynamic response analysis of fluid-structure systems[J]. Computer and Structures, 1985 (21 ) : 937-943.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部