期刊文献+

基于环Z_n上的圆锥曲线数字签名和多重数字签名 被引量:14

Digital Signature and Multiple Digital Signatures Based on the Conic Curve over Z_n
下载PDF
导出
摘要 提出了一个基于环Zn上的圆锥曲线公钥密码体系的数字签名方案.该方案综合利用了大数分解的困难性和有限群上计算离散对数的困难性,从而增强了该数字签名方案的安全性.在此基础上,通过将多个圆锥曲线数字签名联合起来生成对消息的签名,设计实现了多人对同一文件的多重数字签名,最后给出了多重数字签名方案的数值模拟.由于整个签名运算在环Zn上的圆锥曲线上,使得明文嵌入方便,求逆元速度快,元素阶的计算及曲线上点的运算都比较容易,因此更易于实现.在引进标准二进制计算群元素的情况下,还能节约1/4计算量. A digital signature scheme was designed on the public-key cryptography of conic curve over Zn. The scheme made comprehensively use of the difficulties in factorizing large integer and computing discrete logarithm, thereby increasing the performance of security. Furthermore the multiple digital signatures were designed by combining several digital signatures in conic curve o vet Zn, which can be used to realize that several people sign on a same file. Finally, the numeric simulation for the multiple digital signatures was done. The whole signature was operated in con ic curve over Zn, so the scheme is easier to accomplish for convenient plaintext embedding, speed up the inverse operation, and easy for computing element order and points in curves. Moreover, when the standard binary notation system was adopted to compute the integral multiple of an ele ment of a group, the time can be saved approximately by 1/4.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2006年第6期648-650,718,共4页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(10128103) 现代通信国家重点实验室基金资助项目(51436010505sc0101)
关键词 圆锥曲线 离散对数 数字签名 多重数字签名 conic curve discrete logarithm digitsl signature multiple digital signatures
  • 相关文献

参考文献5

  • 1张明志.用圆锥曲线分解整数[J].四川大学学报(自然科学版),1996,33(4):356-359. 被引量:30
  • 2曹珍富.基于有限域Fp上圆锥曲线的公钥密码系统[A].刘木兰等编.第五届中国密码学学术会议论文集[C].北京:科学出版社,1998.45-49.
  • 3孙琦,朱文余,王标.环Z_n上圆锥曲线和公钥密码协议[J].四川大学学报(自然科学版),2005,42(3):471-478. 被引量:44
  • 4Dai Zongduo,Pei Dingyi,Yang Junhui,et al.Cryptanalysis of a public key cryptosystem based on conic curves[A].Proceedings of CrypTEC' 99:International Workshop on Cryptographic Techniques and E-Commerce[C].Hong Kong:City University of Hong Kong,1999.259-261.
  • 5孙琦 张起帆 彭国华.计算群元的整数倍的一种算法及其在公钥密码体制中的应用[A].王新梅等编.密码学进展-ChinaCrypt''2002 第七届中国密码学学术会议论文集[C].北京:电子工业出版社,2002.117-124.

二级参考文献15

  • 1朱文余,孙琦.环Z_n上椭圆曲线的密钥交换协议[J].电子学报,2005,33(1):83-87. 被引量:14
  • 2张明志.用圆锥曲线分解整数[J].四川大学学报(自然科学版),1996,33(4):356-359. 被引量:30
  • 3Hastad J. On using RSA with low exponent in a public key network[ A]. Lecture notes in computer science, 218 on advances in cryptology-Crypto'85[ C]. New York: Springer-Verlag, 1985. 403 - 408.
  • 4Wiener M J. Cryptanalysis of short RSA secret exponents[J]. IEEE transactions on Information Theory, 1990, (36)3: 553- 558.
  • 5Qu Ming-hua,Vanstone S.On ID-based cryptosystemsover zn[R].成都:四川大学数学学院,2000.
  • 6朱文余 孙琦.环zn上椭圆曲线及数字签名方案[J].电子与信息学报(原电子科学学刊),2003,:40-47.
  • 7曹珍富.基于有限域Fp上圆锥曲线的公钥密码系统[A].刘木兰等编.第五届中国密码学学术会议论文集[C].北京:科学出版社,1998.45-49.
  • 8Dai Zong-duo, Pei Ding-yi, Yang Jun-hui, et al. Cryptanalysis of a public key oryptosystem based on conic curves[ R].CrypTEC'99 (Hong Kong), 1999.
  • 9Diffie W, Hellman M E. New directions in cryptography[J]. IEEE Transactions on Information Theory, 1976, 22(6) :644- 654.
  • 10Rivest R L, Shamir A, Adlerman L. A method for obtaining digital signatures and public key cryptosystems[J ]. Comn.ACM, 1978, 21 : 120 - 126.

共引文献52

同被引文献88

引证文献14

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部