期刊文献+

基于选择抽样下的Logistic回归 被引量:1

Logistic Regression in Choice-based Samples
下载PDF
导出
摘要 传统的Logistic回归参数估计(如极大似然估计)是在随机抽样的假设下做出的.但是,在基于选择(Choice-based)抽样条件下,传统的回归系数估计是有偏的.本文利用随机模拟的方法,比较了Logistic回归参数估计的3种方法,即先验概率法、加权法和传统的极大似然估计法,并列举了两种修改Logistic回归参数估计的方法. The traditional parameters estimation (maximum likelihood estimation for example) of logistic regression is based on mode-based inference which involves some hypotheses including infinite population, correct mode specification, etc. Under these hypotheses, if the sample is choicebased, the intercept is the only parameter estimate affected by a sample design that depends on the response variables, if these hypotheses are not satisfied as is often the case in practice, the inference method should be design-based. In this case, all the maximum likelihood estimations of logistic coefficients are biased if the sample is choice-based. The paper presents two methods to fit the logistic regression in choice-based samples and compares their effects on the computer.
作者 陈彬 李从珠
出处 《北方工业大学学报》 2006年第1期86-90,共5页 Journal of North China University of Technology
关键词 LOGISTIC 回归 选择抽样 模型推断 设计推断 logistic regression choice sample mode inference design inference
  • 相关文献

参考文献8

  • 1Cosslett Stephen R. Maximum Likelihood Estimator for Choice-Based Samples. Econometrica, 1981, 49(5):1289-1316
  • 2Cosslett Stephen R. Efficient Estimation of Discrete-Choice Models. In Structural Analysis of Discrete Data with Econometric Applications, eds.Charles F. Manski and DanieIMcFadden. MIT-Press. MA:Cambridge. 1981
  • 3King Gary, Langche Zeng. Explaining Rare Events in International Relations. International Organization (in press), 2000
  • 4Manski Charles F, Steven R Lerman. 1977. The Estimation of Choice Probabilities from Choice Based Samples. Econometrica 1977-1988,45(8):55-56
  • 5Manski Charles F, Daniel McFadden. Alternative Estimators and Sample Designs for Discrete Choice Analysis."In Structural Analysis of Discrete Data with Econometric Applications, eds. Charles F.Manski and Daniel McFadden. Cambridge:MA:MIT Press. 1981
  • 6Prentice R L, R Pyke. 1979. Logistic Disease Incidence Models and Case-Control Studies. Biometrika ,1979, 66:403-411
  • 7Scott A J, Wild C J. Fitting Logistic Models Under Case-Control or Choice Based Sampling. Journal of the Royal Statistical Society, 1986, B 48(2):170-182
  • 8Xie Yu, Charles F Manski. The Logit Model and Response-Based Samples. Sociological Methods and Research ,1989, 17(3):283-302

同被引文献8

  • 1蔡煜东,陈德辉.运用遗传算法拟合Logistic曲线的研究[J].生物数学学报,1995,10(1):59-63. 被引量:13
  • 2Cornelis J,Biesheuvel,Ivar S.Genetic programming outperformed multivariable logistic regression in diagnosing pulmonary embolism.Journal of Clinical Epidemiology,2004,57:551-560.
  • 3Ivar S,Maarten K.Genetic programming as a method to develop powerful predictive models for clinical diagnosis.GECCO'052005,June,164166.
  • 4Milo E, Jeffrey AK. Use of genetic programming to diagnose venous thromboembolism in the emergency department. Genet Program Evolvable ,2008,9:39-51.
  • 5Li L,Jiang W,Li X.A robust hybrid between genetic algorithm and support vector machine for extracting an optimal feature gene subset.Genomics,2005,85:16-23.
  • 6Regeniter A,Freidank H,Dickenmann M.Evaluation of proteinuria and GFR to diagnose and classify kidney disease:Systematic review and proof of concept.European Journal of Internal Medicine,2009,20:556561.
  • 7Michalewicz Z,Genetic Algorithms+Data Structures=Evolution Programs.Berlin:Germany Springer,1989.
  • 8冯国双,陈景武,周春莲.logistic回归应用中容易忽视的几个问题[J].中华流行病学杂志,2004,25(6):544-545. 被引量:40

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部