期刊文献+

优化直径网络构造与d分路由算法 被引量:3

Construct Optimal Diameter Network and D-Partition Routing Algorithm
下载PDF
导出
摘要 网络的最大传输延时这个概念可以抽象为网络拓扑图的直径,而网络拓扑图的直径问题由于涉及网络结构设计中的大量应用而备受关注,研究如何构造直径优化的网络结构和高效的路由算法对于提高网络的性能至关重要.本文运用图论的方法,研究在网络节点具有相同度约束的情况下优化直径网络的构造方法以及路由问题,提出了一种简单有效的启发式路由算法并分析了其计算复杂度.目前,基于该算法的P2P蠕虫防御系统已经设计完成. The maximum delay of network can be denoted by the diameter of the network. The problem of finding topological graphs of optimal diameter receives much attention from researchers due to its possible applications in network structure design. It is highly important to research how to construct an optimal diameter network and design the efficient routing algorithm. In this paper, by using graph-theoretical properties, the authors studied the method of constructing network with an optimal diameter and the routing problem when the degree-constrained was dealt with. The authors also presented an efficient and simple heuristic routing algorithm and analyzed its complexity. At the present time, we have finished the P2P worm defense system based on this algorithm.
出处 《小型微型计算机系统》 CSCD 北大核心 2006年第6期1059-1063,共5页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(90104002 60473082)资助 国家"九七三"计划项目(2003CB314801)资助
关键词 有向正则图 拓扑构造 路由算法 regular on this algorithm directed graphs topology construction routing algorithm
  • 相关文献

参考文献12

  • 1Rebecca Braynard, Dejan Kostic, Adolfo Rodriguez, et al, Opus: an overlay peer utility servicc[C]. 5th International Conference on Open Architectures and Network Programming,2002.
  • 2Andersen D G. Resilient overlay networks [D].Massachusetts Institute of Technology, 2001.
  • 3Stoica I,Morris R, Karger D, et al. Chord: a scalable peer-topeer lookup service for internet applieations[C]. SIGCOMM,San Diego,CA, 2001,149-160.
  • 4Zhao B Y,Kubiatowicz J D,Joseph A D. Tapestry: an infrastructure for fault-tolerant wide area location and routing[R].Univ. California, Berkeley, CA, Tech. Rep. CSD-01-1141,2001.
  • 5Schoone A A, Bodlaender H L, van J. Leeuwen:diameter increase caused by edge deletion[J]. Journal of Graph Theory,1987, 11(3):409-427.
  • 6Rucinski A, Wormald N C. Random graph processes with degree restrictions[Z]. Combin. Probab Comput. 1,1992, 169- 180.
  • 7Erdos P,Gyarfas A, Ruszinko M, How to decrease the diameter of triangle-free graphs [J].Combinatorial, 1998, 18 (4) :493-501.
  • 8Mirka Miller, Ivan fris:minimum diameter of diregular digraphs of degree 2[J]. Computer Journal, 1988,31(1):71-75.
  • 9Bridges W G, Toueg S. On the impossibility of directed Moore graphs [J]. J. Combinatorial Theory, Series 1980,29(3):339-341.
  • 10Bollobas B. Random graphs[M]. Academic Press, 1985.

同被引文献14

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部