期刊文献+

非结构几何下二阶自共轭中子输运方程中的简化球谐函数方法研究 被引量:2

Simplified Spherical Harmonics Method for Self-Adjoint Angular Flux Transport Equation in Unstructured Geometry
下载PDF
导出
摘要 针对球谐函数方法求解中子输运方程时计算量大的缺点,将简化球谐函数(SPN)方法用于离散二阶自共轭(SAAF)中子输运方程的角度变量,同时应用有限元方法在非结构几何下进行空间离散,研究了简化球谐函数方法在SAAF方程中的应用。数值计算结果表明,SPN方法在保证计算精度的条件下,具有比PN方法快的计算速度,而且对于维数越高、网格数越多、展开阶数越高的问题,节省时间的效果越好。 The simplified spherical harmonics (SPN) method is utilized to discrete the angular variables of Self-Adjoint Angular Flux (SAAF) neutron transport equation as spherical harmonics method has the disadvantage of large amount of calculation. To solve the unstructured geometry problem, the spatial variables of SAAF are discretized by using of finite element method. Numerical results of several test problems show that SPN method can obtain high accuracy with a significantly higher computational speed than spherical harmonics (PN) method, and can save more time when dealing with problems with higher dimension, larger amount of meshes, and larger expanding order N.
机构地区 西安交通大学
出处 《核动力工程》 EI CAS CSCD 北大核心 2006年第3期6-10,共5页 Nuclear Power Engineering
基金 国家自然科学基金(10475064) 核反应堆系统设计技术国家级重点实验室资助项目(01A-03-05)
关键词 中子输运方程 简化球谐函数方法 非结构几何 Neutron transport equation, Simplified spherical harmonics, Unstructured geometry
  • 相关文献

参考文献8

  • 1曹良志,吴宏春.非结构网格中子输运方程的球谐函数解法研究[J].核动力工程,2004,25(5):395-398. 被引量:7
  • 2Gelbard E M. Application of Spherical Harmonics Method to Reactor Problems[R]. WAPD-BT-20, 1960.
  • 3Larsen E W, McMhee J M. Morel J E. The Simplified PN Equations as an Asymptotic Limit of the Transport Equation[J]. Trans Am Nucl Soc, 1992, 66:231 - 247.
  • 4Morel J E, McMhee J M, Larsen E W. A Three-Dimensional Time Dependent Unstructured Tetrahedral-Mesh SPN Method[J]. Nucl Sci Eng, 1996, 123(3): 319 -327.
  • 5Larsen E W, Morel J E. McMhee J M. Asymptotic Derivation of the Multigroup PI and Simplified PN Equation with Anisotropic Scattering[J]. Nucl Sci Eng,1996, 123(3): 328 - 342.
  • 6Tomasevic D I, Larsen E W. The Simplified P2 Appoximation[J]. Nucl Sci Eng, 1996, 122(3): 309 - 325.
  • 7Morel J E, McGhee J M, A Self-Adjoint Angular Flux Equation[J], Nucl Sci Eng, 1999, 132(3): 312 - 325.
  • 8Takeda T, Ikeda H. 3-D Neutron Transport Bench marks[J]. Joumal ofNucl Sci Tech, 1991, 28(7): 656 - 669.

二级参考文献4

  • 1[1]Morel J E, McGhee J M. A Self-Adjoint Angular Flux Equation[J]. Nuclear Science and Engineering, 1999,132:312 ~ 325.
  • 2[2]Zekeriya Altac, Bernard I. Spinrad The SKN Method Ⅰ: A High-Order Transport Approximation to Neutron Transport Problems[J]. Nucl Sci & Eng, 1990, 106:471 ~ 479.
  • 3[3]Stepanek J, Auerbach T, Haelg W. Calculation of Four Thermal Reactor Benchmark Problems in X-Y Geometry, EPRI NP-2855, 1983.
  • 4[4]Wood J, Williams M M R. Recent Progress in the Appli cation of the Finite Element Method to the Neutron Transport Equation, Annals of Nuclear Energy, 1984,14:21 ~ 40.

共引文献6

同被引文献6

  • 1吴宏春,刘启伟,姚栋.瞬态中子输运计算程序的研制[J].核动力工程,2006,27(3):11-15. 被引量:1
  • 2Goluoglu S.A Deterministic Method for Transient Three Dimensional Neutron Transport[D].University of Tennessee,Nuclear Engineering Department,1997.
  • 3Pautz A.DORT-TD:A Transient Neutron Transport Code with Fully Implicit Time Integration[J].Nucl Sci Eng,2003,125(3):299-319.
  • 4Alcoufle R E,Randal S B,Jon A D.et al.PARTISN(PARallel.TIme-Dependent SN).Proceedings of the PHYSOR2000[C].Pittsburgh,Pennsylvania,USA.2000.
  • 5Jevremovic. T,Vujic. J,Tsuda. K.A Neutron Transport Code for General Geometry P, eactor Assemblies Based on She Method of Characteristics and R-Function Solid Modeler [J]. Annals of Nuclear Energy, 2001,28(2): 725-152.
  • 6C.Beckert,U.Grundmann.Development and Verification of A Nodal Approach for SoMng the Multigroup SP3 Equations [J]. Annals of Nuclear Energy,2008, 35 : 75-86.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部