期刊文献+

New Exact Solutions of Multi-component mKdV Equation

New Exact Solutions of Multi-component mKdV Equation
下载PDF
导出
摘要 In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbolic function solutions. Then, to the three-component mKdV equation, five types of effective solution are presented in detail.
作者 YE Cai-Er
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2006年第5期777-780,共4页 理论物理通讯(英文版)
基金 The project supported by the Education Foundation of Zhejiang Province of China under Grant No. 20030557 and the Science Foundation of Zhejiang Forestry College
关键词 multi-component mKdV equation exact solution Jacobi elliptic function hyperbolic function 多成分方程 精确解 Jacobi椭圆函数 双曲线函数
  • 相关文献

参考文献16

  • 1G.W.Bluman and S.Kumei,Symmetries and Differential Equations,AMS81,Springer,New York (1989).
  • 2P.J.Olver,Applications of Lie Groups to Differential Equations,(2nd ed.) GTM107,Springer (1993).
  • 3R.Hirota,Phys.Rev.Lett.27 (1971) 1192.
  • 4M.Yoshimasa,Bilinear Transformation Method,Academic,Japan (1984).
  • 5S.Y.Lou,Phys.Lett.A 277 (2000) 94.
  • 6X.Y.Tang,S.Y.Lou,and Y.Zhang,Phys.Rev.E 66(2002) 046601.
  • 7S.F.Shen,J.Zhang,and Z.L.Pan,Phys.Lett.A 339(2005) 52.
  • 8S.Y.Lou and G.J.Ni,J.Math.Phys.30 (1989) 1614.
  • 9Willy Hereman and Masanori Takaoka,J.Phys.A:Math.Gen.23 (1990) 4805.
  • 10S.Y.Lou and G.X.Huang,Commun.Theor.Phys.(Beijing,China) 17 (1992) 67.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部