期刊文献+

恰有一公共点的双圈图的邻接矩阵的奇异性 被引量:1

Singularity of Adjacency Matrix of Graphs with Exactly One Copoint Bicycle
下载PDF
导出
摘要 恰有一公共点的双圈图的邻接矩阵是奇异的当且仅当G满足:G有完美匹配,c1与c2中一个是4 m圈,另一个是偶圈,4 m圈上不挂出奇数阶树;G有完美匹配,G-V(c1)-V(c2)含完美匹配,G-V(c1)或G-V(c2)含完美匹配,且含有4 m圈;G无完美匹配,G-V(c1)和G-V(c2)均含有完美匹配,且G中含有4k1+3和4e1+1(k1,e1∈N)阶图;G,G-V(c1)和G-V(c2)都不含完美匹配.恰有一公共点的双圈图的邻接矩阵的行列式的最大值是4. The adjacency matrix of a graph with exactly one co - point bicyclesis singular if and only if G has a perfect matching and a cycle of order 4 m ( m ∈ N) and the other cycle of order 2k(k∈N), and there isn't an odd tree under the cycle of order 4 m; or G and G - V (c1 ) - V (c2 ) and one of G - V(c1 ) and G - V(c2 ) all have perfect matching and has a cycle of order 4 m(m∈N) ; or if G has no perfect matching, G- V(c1) and G - V( c2 ) both have a perfect matching, and G has cycles of order 4k1 + 3 and 4e1 + 1 ( k1 , e1 ∈ N) ; or if G and G - V(c1 ) and G - V( c2 ) all have no perfect matching. The maximum determinant of the adjacency matrix of graphs with only one co - point bicycle is 4.
作者 何梅芝
出处 《南华大学学报(自然科学版)》 2006年第1期108-110,114,共4页 Journal of University of South China:Science and Technology
关键词 恰有一公共点的双圈图 邻接矩阵 行列式 graph with only one co -point bicycle adjacency matrix determinant
  • 相关文献

参考文献2

二级参考文献5

  • 1Ryscer H J.Maximal determinants in combinatoriol investigations cand.J.Math.1956,8:245-249.
  • 2Brualdi R A,Solheid E S.Maximun determinants of complementary acyclic matrices of zeros and ones.Discrete Math.1986,61:1-19.
  • 3Bela Bollobas.Moden grap theory.Springer-Verlag New York,1998.
  • 4Sachs H.Beziehungen zwischen den in einem graphen enthaltenen kreisen und seinem charakterischen polynom.Puble.Math.Debrecen,1964,11:119-134
  • 5扈生彪.单圈图的邻接矩阵的分类及其最大行列式[J].数学研究,2003,36(1):102-104. 被引量:12

共引文献6

同被引文献9

  • 1丌静.n阶双圈图的邻接谱半径[J].海南师范学院学报(自然科学版),2006,19(4):289-295. 被引量:4
  • 2谢小花,陈宝兴,陈宇.有交双圈图邻接矩阵的奇异性[J].漳州师范学院学报(自然科学版),2007,20(2):6-10. 被引量:2
  • 3HARARY F. Graph theory[ M]. Addition-Wesley, 1969.
  • 4BARIK S, NEUMANN M, PATI S. On nonsingular trees and a reciprocal eigenvalue property[J]. Linear and Multilinear Algebra, 2006,54 : 453-465.
  • 5FRUCHT R, HARARY F. On the corona of two graphs[ J]. Aequationes Math, 1970,4:322-325.
  • 6BARIK S, NATH M, PATI S, et al. Unicyclic graphs with the strong reciprocal eigenvalue property[ J]. Electronic Journal of Linear Algebra, 2008,17 : 139-153.
  • 7CVETKOVIC D M, DOOB M, SACHS H. Spectra of graphs [ M ]. New York: Academic Press, 1979.
  • 8BARIK S, PATI S, SARMA B K. The spectrum of the corona of two graphs[J]. SIAM J Discrete Math, 2007,21:47-56.
  • 9扈生彪.单圈图的邻接矩阵的分类及其最大行列式[J].数学研究,2003,36(1):102-104. 被引量:12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部