摘要
恰有一公共点的双圈图的邻接矩阵是奇异的当且仅当G满足:G有完美匹配,c1与c2中一个是4 m圈,另一个是偶圈,4 m圈上不挂出奇数阶树;G有完美匹配,G-V(c1)-V(c2)含完美匹配,G-V(c1)或G-V(c2)含完美匹配,且含有4 m圈;G无完美匹配,G-V(c1)和G-V(c2)均含有完美匹配,且G中含有4k1+3和4e1+1(k1,e1∈N)阶图;G,G-V(c1)和G-V(c2)都不含完美匹配.恰有一公共点的双圈图的邻接矩阵的行列式的最大值是4.
The adjacency matrix of a graph with exactly one co - point bicyclesis singular if and only if G has a perfect matching and a cycle of order 4 m ( m ∈ N) and the other cycle of order 2k(k∈N), and there isn't an odd tree under the cycle of order 4 m; or G and G - V (c1 ) - V (c2 ) and one of G - V(c1 ) and G - V(c2 ) all have perfect matching and has a cycle of order 4 m(m∈N) ; or if G has no perfect matching, G- V(c1) and G - V( c2 ) both have a perfect matching, and G has cycles of order 4k1 + 3 and 4e1 + 1 ( k1 , e1 ∈ N) ; or if G and G - V(c1 ) and G - V( c2 ) all have no perfect matching. The maximum determinant of the adjacency matrix of graphs with only one co - point bicycle is 4.
出处
《南华大学学报(自然科学版)》
2006年第1期108-110,114,共4页
Journal of University of South China:Science and Technology
关键词
恰有一公共点的双圈图
邻接矩阵
行列式
graph with only one co -point bicycle
adjacency matrix
determinant