期刊文献+

两自由度机械手周期运动的倍周期分岔 被引量:1

Period-Doubling Bifurcations of Period Motion of Two-Degree-of-Freedom Manipulators
下载PDF
导出
摘要 为了研究两自由度机械手系统的动力学稳定性,基于拉格朗日方程给出了它的运动微分方程,并用扰动理论确定系统周期运动具有周期系数的扰动微分方程;根据F loquet理论对该系统扰动微分方程的平衡点的稳定性进行了分析,并用数值方法研究了平衡点失稳后的倍周期分岔过程.研究表明,随系统参数的改变,当系统特征矩阵有特征值-1时,系统将发生倍周期分岔. To investigate the dynamic stability of a two-degree-of-freedom manipulator as a system, differential equations of motion for this system were established on the basis of the Lagrange equation, and perturbed differential equations with period coefficients were derived for the period motion of this system by applying the perturbance theory. Furthermore, the stability of the equilibrium point for the perturbed differential equations was analyzed by utilizing the Floquet theory, and the process of a period-doubling bifurcation after stability loss of the equilibrium point were investigated numerically. The research shows that a period-doubling bifurcation will occur if the eigen-matrix for the system has one eigenvalue -1 with the change of its parameters.
作者 郑小武
出处 《西南交通大学学报》 EI CSCD 北大核心 2006年第3期396-399,共4页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(10472096)
关键词 机械手 周期运动 周期系数系统 倍周期分岔 manipulator period motion system with period coefficient period-doubling bifurcation
  • 相关文献

参考文献5

二级参考文献11

共引文献8

同被引文献13

  • 1唐驾时,欧阳克俭.logistic模型的倍周期分岔控制[J].物理学报,2006,55(9):4437-4441. 被引量:17
  • 2于津江,刘学军,韩万强,许海波.平移法控制离散系统的倍周期分岔和混沌[J].计算物理,2007,24(1):116-120. 被引量:1
  • 3胡岗,萧井华,郑志刚,等.混沌控制[M].上海:上海科技教育出版社,1999.
  • 4郑小武.一类周期系数力学系统的Hopf-Flip分岔[J].振动工程学报,2007,20(4):412-416. 被引量:2
  • 5JUNE Y L, YAN J J. Control of impact oscillator[J]. Chaos, Solitons and Fractals, 2006, 28: 136-142.
  • 6HUBLER A, LUSCHER E. Resonant stimulation of complex systerms[J]. Helvetica Physica Acta, 1989, 62: 544-551.
  • 7OTT E, GREBOGI C, YORK J A. Controlling chaos[J]. Physical Review Letters, 1990, 64(11): 1196- 1199.
  • 8SINHA S C, PANDIYAN R. Analysis of quasilinear dynamical systems with periodic coefficients via Liapunov-Floquet transformation[J]. International Journal of Nonlinear Mechanics, 1994, 29(5): 687-702.
  • 9ALEXANDRA D,SINHA S C. Bifurcation control of nonlinear systems with time-periodic coefficients[J]. Journal of Dynamic Systems, Measurement, and Control, 2003, 125: 541-548.
  • 10SINHA S C, REDKAR S, ERIC A B. Order reduction of nonlinear systems with time periodic coefficients using invariant manifolds[J]. Journal of Sound and Vibration, 2005, 284: 985-1002.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部