期刊文献+

基于改进的动态神经网络的网络入侵检测模型 被引量:2

Network Intrusion Detection Models Based on Improved Dynamic Neural Network
下载PDF
导出
摘要 提出了一种改进型的动态神经网络,并成功地将其应用于网络入侵检测系统中。对于给定的全连接的动态神经网络,在通过学习以后可以成为部分连接的神经网络系统,从而降低了计算的成本。针对目前常见的4种不同类型的网络攻击行为(即DoS,Probe,R2L,和U2R),利用给定的改进型的动态神经网络分别构建相对应的检测系统。然后使用改进的遗传算法对给定的动态神经网络的权值和开关参数进行调节,以适应不同类型的入侵检测。最后利用KDD’99网络入侵检测数据对所提出的网络入侵检测模型进行训练和测试,初步试验结果表明,所提出的入侵检测系统具有较高的检测率。 This paper extends these works by applying an improved dynamic neural network (IDNN) to network intrusion detection system. The weights and parameters of the improved dynamic neural network are tuned by improved genetic algorithm (IGA). A given fully connected feed-forward dynamic neural network may become a partially connected network after learning, which implies that the cost of implementing the IDNN may be reduced to very low. Four network intrusion detectors (corresponding to Dos, Probe, R2L and U2R, respectively) based on the improved dynamic neural network are developed, which can give balance detection accuracy between different types of intrusion. The proposed intrusion detectors are evaluated by KDD'99 network intrusion detection data sets. Experimental results demonstrate that the proposed intrusion detectors have enough accuracy for network intrusion detection.
出处 《计算机工程》 EI CAS CSCD 北大核心 2006年第11期10-12,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2002AA142010)
关键词 动态神经网络 网络入侵检测 遗传算法 Dynamic neural network Network intrusion detection Genetic algorithm
  • 相关文献

参考文献4

  • 1Leung F H E Lam H K, Ling S H, et al. Tuning of the Structure and Parameters of a Neural Network Using an Improved Genetic Algorithm[J]. IEEE Transactions on Neural Networks, 2003,14(1).
  • 2Lee W, Stolfo S. A Framework for Constructing Features and Models for Intrusion Detection Systems[J]. ACM Transactions on Information and System Security, 2000, 3(4).
  • 3University of California, Irvine. KDD Cup 1999 Data[EB/DL].http://kdd.ics, uci.edu/databases/kddcup99/kddcup99.htm, 1999.
  • 4郭山清,高丛,姚建,谢立.基于改进的随机森林算法的入侵检测模型(英文)[J].软件学报,2005,16(8):1490-1498. 被引量:18

二级参考文献20

  • 1Denning D. Intrusion-Detection model. IEEE Trans. on Software Engineering, 1987,SE-13(2):222-232.
  • 2Lee W, Stolfo SJ, Mok KW. A mining framework for building intrusion detection models. In: Proc. of the 1999 IEEE Symp. on Security and Privacy. 1999. 120-132.
  • 3Mukkamala S, Janoski G, Sung AH. Intrusion detection using support vector machines and neural networks. In: Proc. of the IEEE Int'l Joint Conf. on Neural Networks. 2002. 1702-1707.
  • 4Mukkamala A, Sung AH. Identifying significant features for network forensic analysis using artificial intelligence techniques. Int'l Journal on Digital Evidence, 2003,1 (4): 1-17.
  • 5Nguyen BV. Introduction support vector machines and application to the computer security of anomaly detection. Presentation at Applied and Computational Mathematics Seminar. 2003-07.
  • 6Denning DE. Protection and defense of intrusion. Presented at Conf. on National Security in the Information Age, US Air Force Academy, 1996.
  • 7Breiman L. Random forests. Machine Learning, 2001,45(1):5-32.
  • 8Breiman L. Manual on setting up, using, and understanding random forests V4.0. 2003. http://oz. Berkeley.edu/users/breiman/Using_random_forests_V4.0.pdf
  • 9Remlinger K. Introduction and application of random forest on high thoughput screening data from drug discovery. In: Proc. of the Workshop for the SAMSI Program on Data Mining and Machine Learning. 2003.
  • 10Amit, Y, Geman D. Shape quantization and recognition with randomized trees. Neural Computation, 1997,9(7),1545-1588.

共引文献17

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部