摘要
当网络节点数目为有限时,采用了理论计算和仿真分析相结合的方法,得到了移动自组网的网络连接概率计算公式。该文在基于网络节点按密度为D的泊松点过程分布的情况下,对于一维[0,z]直线网络和二维[0,z]2平面网络,得到了网络连接的概率计算公式。并在将一维[0,z]直线网络的分析方法扩展应用在二维[0,z]2平面网络时,得到了二维[0,z]2平面网络连接概率的上界。
When the method of theory computation and simulation analysis is adopted, connectivity probability formulas are obtained in finite mobile ad hoc networks. With the standard assumption of Poisson point process of density D in [0, z] for one-dimensional networks, and [0, z]^2 for two-dimensional networks, it obtains the formulas for the probability that network is connected. Finally, when extending one-dimensional networks results to two-dimensional networks, an upper bounds for the connectivity probability is also obtained.
出处
《计算机工程》
EI
CAS
CSCD
北大核心
2006年第11期130-132,共3页
Computer Engineering
基金
湖南省自然科学基金资助项目(04JJ3069)
湖南省教育厅科学研究基金资助项目(02C315)
关键词
连接性
自组网
概率
泊松点过程
Connectivity
Ad Hoc network
Probability
Poisson point process