期刊文献+

基于径向基概率神经网络的工程图纸图形符号识别 被引量:4

Graphic symbol recognition of engineering drawings based on radial basis probabilistic neural networks
下载PDF
导出
摘要 基于径向基概率神经网络,提出一种扫描工程图纸图像分割后的图形符号识别方法.针对已分割的扫描工程图纸图形符号图像,首先进行二值化处理,然后对二值图形符号图像进行Hu不变矩特征提取,再使用一种新型的径向基概率神经网络进行分类,从而实现图像识别.为加快径向基概率神经网络的收敛速度,采用递归最小二乘算法进行训练.实验结果表明,径向基概率神经网络在识别性能与速度等方面非常适合于工程图纸的图形符号识别. A novel graphic symbol recognition approach of engineering drawings based on radial basis probabilistic neural networks (RBPNN) is proposed. The Hu invariant moment method is applied to extract the shape features of the segmented graphic symbol image of scanned engineering drawings. The experimental results show that the RBPNN achieves a higher recognition rate and better classification efficiency with respect to radial basis function neural networks (RBFNN) and multi-layer perceptron networks (MLPN) for the graphic symbol recognition task.
出处 《智能系统学报》 2006年第1期88-91,共4页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60405002) 合肥学院自然科学研究基金资助项目(05ky013zr).
关键词 径向基概率神经网络 网形符号 工程图纸识别 radial basis probabilistic neural network graphic symbol engineering drawings recognition
  • 相关文献

参考文献3

  • 1[3]HUANG Deshuang.Radial basis probabilistic neural networks:model and application[J].International Journal of Pattern Recognition and Artificial Intelligence,1999,13(7):1083-1101.
  • 2[5]HUANG Deshuang,ZHAO Wenbo.Determining the centers of radial basis probabilistic neural networks by recursive orthogonal least square algorithms[J].Applied Mathematics and Computation,2005,162:461-473.
  • 3[8]CHEN C C.Improved moment invariants for shape discrimination[J].Pattern Recognition,1993,26 (5):683-686.

同被引文献25

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部