期刊文献+

金属冲击温度的辐射法测量问题 被引量:7

Hugoniot Temperature Measurements for Metals by Using Optical Radiation Method—Model Review and Discussion
下载PDF
导出
摘要 金属的冲击温度及熔化温度测量对构建其完全状态方程具有重要意义。简要综述了用于金属冲击温度及熔化温度辐射法测量的一维热传导理想界面模型和非理想界面模型,并着重对模型中明示或隐含的关键假定的合理性、影响金属冲击温度与熔化温度结果的主要因素进行了分析、讨论,以期对实验数据有一个合理的评估。还讨论了求解理想和非理想界面模型一维热传导方程界面温度时所隐含的冲击压缩下热导率不随温度而变、冲击压缩下金属样品/窗口界面辐射的灰体假定,以及窗口材料的透明性、非理想界面模型中表观界面温度的修正、动载条件下金属高压熔化温度的测量、界面的非Flourier热传导等问题。分析结果表明,目前采用辐射法测量大致可以得到冲击温度,在发生熔化的情况下可获得熔化温度,但离精密测量的要求还有较大差距。 Shock temperature and melting temperature measurements are of importance to construct complete equation-of-states of materials. In this article,we overviewed the one-dimensional heat conduction model at ideal interface and model at non-ideal interface in Hugoniot temperature measurements of metals, focusing on the reasonability or tenability of the inclusive and implicative assumptions in models, and the principal factors influencing the resultant temperature. The discussed issues deal with the assumptions of the heat conductivity at shock compression independent of temperature to derive an analytical solution to the interface temperature,that of the greybody emitter of the sample/ window interface at shock compression, the transparency of window under shock temperature, the correction of apparent interface temperature to ideal interface temperature in non-ideal interface model, the measurements for melting temperature under shock compression, and the non-Flourier heat conduction at the interface. The investigations show that the metal-sample/window interfacial radiation measurements can yield an approximate Hugoniot temperature,and even an approximate melting temperature at interface pressure in the case of melting as a whole.
作者 戴诚达 谭华
出处 《高压物理学报》 EI CAS CSCD 北大核心 2006年第2期113-121,共9页 Chinese Journal of High Pressure Physics
关键词 金属 冲击温度 熔化温度 界面 热传导 metals Hugoniot temperature melting temperature interfaee heat conduction
  • 相关文献

参考文献22

  • 1Boslough M B,Ahrens T J. A Sensitive Time-resolved Radiation Pyrometer for Shock Temperature Measurements above 1 500 K [J]. Rev Sci Instrum, 1989,60,3711-3716.
  • 2K ubayashi T, Sekine T, Fat' yanov O V, et al. Radiation Temperatures of Soda-Lime Glass in Its Shock-Compressed Liquid State [J]. J Appl Phys, 1998,83 : 1711-1716.
  • 3Yoo C S, Holmes N C,Ross M, et al. Shock Temperatures and Melting of Iron at Earth Core Conditions [J]. Phys Rev Lett, 1993,70.3931-3934.
  • 4Nellis W J, Yoo C S. Issues Concerning Shock Temperature Measurements of Iron and Other Metals [J]. J Geophys Res,1990,95(B13) :21749-21752.
  • 5Grover R,Urtiew P A. Thermal Relaxation in Interfaces Following Shock Compression [J]. J Appl Phys, 1974,45:146-152.
  • 6McQueen R G,Issak D G. Characterizing Windows for Shock Wave Radiation Studies [J]. J Geophys Res, 1990,95(B13):21753-21765.
  • 7Tan H,Dai C D. Problems of Shock Temperature Measurements for Metals by Using Optical Radiometry Method[J]. High Pressure Research,2001,21 : 183-214.
  • 8周显明,经福谦,黄建彬.薄夹层界面热弛豫解及其在冲击温度研究中的意义[J].高压物理学报,1997,11(1):8-12. 被引量:7
  • 9Blanco E, Mexmain J M,Chapron P. Temperature Measurements of Shock Heated Materials Using Multispectral Pyrometry: Application to Bismuth [J]. Shock Wave, 1999,9: 209-214.
  • 10Urtiew P A,Grover R. Temperature Deposition Caused by Shock Interaction with Material Interface [J]. J Appl Phys, 1974,45 : 140-145.

二级参考文献7

共引文献12

同被引文献74

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部