期刊文献+

独立同分布随机变量列加权和的弱大数定律

The Weak Law of Large Numbers for Weighted Sums of Random Variable Sequences of Independent and Identical Distribution
下载PDF
导出
摘要 证明了{Tnbn}(对某些{bn})依概率收敛于1,并指明这些{bn};推广了文[2]中的结果. In this paper, we prove that {Tn/bn} converges in probability to 1 and obtain these{bn}; we extend some results in paper [2].
出处 《五邑大学学报(自然科学版)》 CAS 2006年第2期33-36,共4页 Journal of Wuyi University(Natural Science Edition)
关键词 弱大数定律 分支过程 依概率收敛 weak law of large numbers branching process convergence in probability
  • 相关文献

参考文献5

  • 1钱能生.随机过程的广义收敛性[J].五邑大学学报(自然科学版),2006,20(1):1-4. 被引量:1
  • 2FELLER W.An Introduction to Probability Theory and its Applications[M].New York:Wiley,1971.
  • 3JONES O D.On the convergence of the multitype branching Processes with varying enviroment[J].Ann.Appl.Probab,1997,(7):772-801.
  • 4COHN H,HALL P.On the limit behaviour of weighted sums of random variables[J].Z Wahrsch Verw Gebiete,1982,(59):319-331.
  • 5PETROV V V.Limit Theorems of Probability Theorey of Sequences of Independent Random Variables[C].London:Clarendon Press,Oxford Science Publications,1995.

二级参考文献2

  • 1Jones O D. On the convergence of the multitype branching processes with varying enviroment [J]. Ann Appl Probab, 1997, 7: 772-801.
  • 2Seneta E. On rencent theorems concerning the supercritical Galton-Watson Process [J]. Ann Math Statist,1968, 39: 2098-2102.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部