期刊文献+

余半单Hopf代数的素数维余表示 被引量:1

Co-representations of prime dimension for cosemisimple Hopf algebras
下载PDF
导出
摘要 设k是特征为0的代数闭域,H为k上的有限维余半单Hop f代数.首先证明了如果H具有型l∶1+m∶2+1∶3+…,则3整除H的维数;其次证明了如果H具有型l∶1+m∶2+…+1∶p+…,且H没有9维的单子余代数,则p整除H的维数,其中p为素数. Let H be a cosemisimple Hopf algebra over an algebraically closed field k of characteristic zero. This paper shows that if H is of type l: 1 +m : 2+ 1 : 3+…, then its dimension is divisible by 3. It also shows if H is of type l : 1+m: 2+…+1: p+…, and H does not contain simple subcoalgebras of dimension 9, then p divides the dimension of H,where p is prime.
出处 《扬州大学学报(自然科学版)》 CAS CSCD 2006年第2期1-3,共3页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学基金资助项目(10241002) 江苏省自然科学基金资助项目(Q0209081) 南京农业大学青年科技创新基金资助项目(KJ05028)
关键词 HOPF代数 Kaplansky猜想 Frobenius性质 Hopf algebra Kaplansky' s conjecture Frobenius property
  • 相关文献

参考文献9

  • 1LARSON R G,RADFORD D E.Finite dimensional cosemisimple Hopf algebras in characteristic zero are semisimple[J].J Alg,1988,117:267-289.
  • 2LARSON R G,RADFORD D E.Semisimple cosemisimple Hopf algebras[J].Amer J Math,1988,110:187-195.
  • 3KAPLANSKY I.Bialgebra[M].Chicago:Univ Chicago Press,1975.
  • 4KASHINA Y,SOMMERHAUSER Y,ZHU Y.Self dual modules of semisimple Hopf algebras[J].J Alg,2002,257:88-96.
  • 5NICHOLS W D,RICHMOND M B.The Grothendieck group of a Hopf algebra[J].J Pure Appl Alg,1996,106:297-306.
  • 6BURCIU S.Representations of degree three for semisimple Hopf algebras[J].J Pure Appl Alg,2004,194:85-93.
  • 7MONTGOMERY S.Hopf algebras and their actions on rings[M].Providence:Amer Math Soc,1993.
  • 8MILITARU G.Heisenberg double,pentagon equation,structure and classification of finite-dimensional Hopf algebras[J].J London Math Soc,2004,69:44-64.
  • 9NATALE S.On semisimple Hopf algebras of dimension pq2[J].J Alg,1999,221:242-278.

同被引文献14

  • 1KAPLANSKY I. Bialgebras [M]. Chicago: University of Chicago Press, 1975: 55-57.
  • 2ETINGOF P, GELAKI S. Some properties of finite dimensional semisimple Hopf algehras [J]. Math Res Lett, 1998, 5(2): 191-197.
  • 3ETINGOF P, GELAKI S. Semisimple Hopf algebras of dimension pq are trivial[J]. J Algebra, 1998, 210(2) : 664-669.
  • 4NATALE S. On semisimple Hopf algebras of dimension pq^2[J]. J Algebra, 1999, 221(1): 242-278.
  • 5NATALE S. On semisimple Hopf algebras of dimension pq^2 , II [J]. Algebras Represent Theory, 2001, 4(3): 277-291.
  • 6NATALE S. On semisimple Hopf algebras of dimension pq' [J]. Algebras Represent Theory, 2004, 7 (2): 173-188.
  • 7ANDRUSKIEWITSCH N. About finite dimensional Hopf algebras [J]. Contemp Math, 2002, 294: 1-57.
  • 8MONTGOMERY S. Classifying finite dimensional semisimple Hopf algebras [J]. Contemp Math, 1998, 229: 265-279.
  • 9NATALE S. Semisolvability of semisimple Hopf algebras of low dimension [J]. Mere Amer Math Soc, 2007, 186(874) : 1-123.
  • 10MONTGOMERY S. Hopf algebras and their actions on rings [M]. Providence: Amer Math Soc, 1993: 1-7.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部