期刊文献+

基于特征的音频比对技术 被引量:15

Feature-based Comparison of Audio
下载PDF
导出
摘要 音频比对有别于语音识别,音频比对不存在音频重构.在保证音频主要信息不丢失的前提下,采用二阶Haar小波变换压缩原始音频,以音频帧的方式提取出能代表音频主要信息特征的质心、均方根和前12个Mel倒谱系数,并分别计算这3类参数的欧氏距离,根据欧氏距离的值与阀值ε之间的关系,完成音频间的比对任务.经实践证明,这套方案对于音频比对具有较高的准确性和较好的实时性. Audio comparison, different from speech recognition, does not have the necessity of audio reconstruction. Under keeping the major audio information, the original audio frequency is compressed in the way of Haar wavelet transform . Based on audio frames, the centroids reflect the features of major audio information, RMS, and the first 12 Mel-Frequency Cepstral Coefficients are extracted, and the Euclidean Distance of these three parameters is computed respectively. Finally audio comparison is accomplished according to the relationship between the value of Euclidean Distance and Threshold Value . The experiments show that this algorithm has a nigh accuracy and efficiency. It will play an active role in computer-bases audio rec- ognition and speech recognition.
出处 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期35-38,共4页 Journal of Henan Normal University(Natural Science Edition)
基金 四川省教育厅青年重点基金项目(2002A117)
关键词 小波变换 音频参数 欧氏距离 音频相似度 wavelet transform audio parameter Euclidean Distance audio similarity
  • 相关文献

参考文献7

二级参考文献44

  • 1[1]Feiten, B., Frank, R., Ungvary, T. Organization of sounds with neural nets. In: Proceedings of the 1991 International Computer Music Conference, International Computer Music Association. San Francisco, 1991. 441~444.
  • 2[2]Feiten, B., Günzel, S. Automatic indexing of a sound database using self-organizing neural nets. Computer Music Journal, 1994,18(3):53~65.
  • 3[3]Wold, E., Blum, T., Keislar, D., et al. Content-Based classification, search and retrieval of audio. IEEE Multimedia Magazine, 1996,3(3):27~36.
  • 4[4]Foote, J.T. Content-Based retrieval of music and audio. Multimedia Storage and Archiving Systems II, 1997,32(29):138~147.
  • 5[5]Li, S.Z. Content-Based classification and retrieval of audio using the nearest feature line method. IEEE Transactions on Speech and Audio Processing, 2000,8(5):619~625.
  • 6[6]Li, S.Z., Guo, Guo-dong. Content-Based audio classification and retrieval using SVM learning. In: Proceedings of the 1st IEEE Pacific-Rim Conference on Multimedia. 2000.
  • 7[7]Jiang, Hao, Lin, Tony, Zhang, Hong-jiang. Video segmentation with the support of audio segmentation and classification. In: Proceedings of the IEEE International Conference on Multimedia and Expo (ICME 2000), Vol 3. NY: IEEE, 2000. 1507~1510.
  • 8[8]He, Li-wei, Sanocki, E., Gupta, A., et al. Auto-Summarization of audio-video presentations. In: Proceedings of the 7th ACM International Conference on Multimedia. Orlando: ACM Press, 1999. 489~498.
  • 9[9]Patel, N., Sethi, I. Audio characterization for video indexing. In: Proceedings of the SPIE on Storage and Retrieval for Still Image and Video Databases, Vol 2670. 1996. 373~384.
  • 10[10]Liu, Zhu, Huang, J., Wang, Y. Classification of TV programs based on audio information using hidden Markov model. In: Proceedings of the IEEE Signal Processing Society 1998 Workshop on Multimedia Signal Processing. IEEE, 1998. 27~32.

共引文献121

同被引文献40

引证文献15

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部