期刊文献+

非负稀疏编码收缩法的自然图像消噪 被引量:4

Natural image denoising method based on nonnegative sparse coding shrinkage
下载PDF
导出
摘要 非负稀疏编码(NNSC)算法仅依赖自然图像数据的统计特性,具有自适应性.利用NNSC算法可以成功地提取自然图像的特征基向量;作为对特征基的一个实际应用,提出了一种新颖的用非负稀疏编码收缩技术消除自然图像中的高斯加性噪声的方法.实验表明,提取的特征基向量在时域和频域上都有方向性和局部性,表现了输入自然图像的边缘特性;而且与独立分量分析(ICA)法相比,NNSC法提取的特征基有更清晰的边缘特征.目视效果和归一化信噪比证明了NNSC收缩法的消噪效果要优于稀疏编码(或ICA)收缩法、小波收缩法和Wiener滤波等方法. Non-negative sparse coding(NNSC) relies on natural image statistical properties, therefore, it is self-adaptive. The feature basis vectors of natural images can be successfully extracted by NNSC. As a practical application of such basis vectors, a novel image denoising method based on NNSC shrinkage technique to reduce Gaussian additive noise was proposed. Experimental results show that the feature bases extracted are localized and oriented in the temporal and frequency domains, and this case shows efficiently edge features of natural images. Moreover, compared with the method of independent component analysis (ICA), the feature bases extracted by the NNSC algorithm exhibit much clearer edge features. In view of to the visual effect and the normalized signal-ratio-noise (NSNR) values of denoised images, the denoising results show that the NNSC shrinkage method outperforms any other types of denoising methods such as sparse coding (or ICA) shrinkage, wavelet-based soft shrinkage, Wiener filter, etc..
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2006年第5期497-501,共5页 JUSTC
基金 国家自然科学基金专项基金(60472111 30570368 60405002)资助
关键词 非负稀疏编码 稀疏编码 独立分量分析 特征基向量 图像特征提取 图像消噪 non-negative sparse coding sparse coding independent component analysis feature bases image feature extraction image denoising
  • 相关文献

参考文献10

  • 1Hoyer P O.Non-negative sparse coding[C] // Neural Networks for Signal Processing Ⅻ (Proc.IEEE Workshop on Neural Networks for Signal Processing),Martigny:IEEE press,2002:557 565.
  • 2Hoyer P O.Modeling receptive fields with non-negative sparse coding[J].Neucomputing,2003,52-54:547-552.
  • 3Olshausen B A,Field D J.Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J].Nature,1996,381 (13):607-609.
  • 4Simoncelli E P,Olshausen B A.Natural image statistics and neural representation[J].Annual Review of Neuroscience,2001,24:1 193-1 216.
  • 5Hyv rinen A,Oja E,Hoyer P,et al.Image feature extraction by sparse coding and independent component analysis[C] //Proceedings of International Conference on Pattern Recognition (ICPR'98),Brisbane,Australia,1998:1 268-1 273.
  • 6Hoyer P O,Hyvarinen A.Independent component analysis applied to feature extraction from colour and stereo images[J].Network:Computation in Neural Systems,2000,11 (3):191-210.
  • 7Lee D D,Seung H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401:788-791.
  • 8Barlow H B.Unsupervised learning[J].Neural Computation,1989,1:295-311.
  • 9Pham D T,Gurrat P,Jutten C.Separation of a mixture of independent sources through maximum likelihood approach[C] // Proceedings of European Signal Processing Conference(EUSIPCO),Brussels,Belgium,1992:771-774.
  • 10Hyvarinen A,Hoyer P O,Oja E,et al.Sparse code shrinkage for image denoising[C] // Neural Networks Proceedings of IEEE World Congress on Computational Intelligence,Anchorage,Alaska,1998,2:859-864.

同被引文献85

引证文献4

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部