摘要
通过对系统x′(t)=A(t)x(t)+g(t)的2π-周期解的讨论,给出其周期解界的估计式,再结合Shauder不动点原理研究了下列系统x′(t)=A(t)x(t)+f(t,x(t-τ(t)))周期解的存在性以及周期解界的估计.
In this paper, through discussing the following Variable Coeffcient equations x′(t)=A(t)x(t)+g(t)
we give an estimation for Me bound of its 2π-periodic solution. Then we use Shauder' s fixed point theorem to study the periodic solution to the following nonlinear equations x′(t)=A(t)x(t)+f(t,x(t-τ(t)))some new results on the existence of periodic solutions are obtained.
出处
《安徽师范大学学报(自然科学版)》
CAS
2006年第3期223-227,共5页
Journal of Anhui Normal University(Natural Science)
基金
安徽省自然科学基金(050460103)
安徽省教育厅自然科学基金重点项目(2005kj031zd)
关键词
变系数方程组
周期解
Shauder不动点原理
variant coefficient equations
Shauder's fixed point theorem
periodic solution