期刊文献+

薄弱环节对复合材料波纹梁吸能能力的影响 被引量:7

Effect of Trigger Geometry on Energy Absorption of Composite Waved-beams
下载PDF
导出
摘要 薄弱环节设置是复合材料吸能结构的关键技术,良好的设计可以使复合材料结构产生稳定的渐进压溃,从而吸收较多的能量。基于波纹梁准静态轴向压溃实验结果,运用MSC/DYTRAN有限元软件建立了三组不同尺寸的碳纤维环氧树脂波纹梁的有限元模型,在数值模拟结果与实验结果基本吻合的基础上,分析了不同薄弱环节设置对复合材料波纹梁峰值载荷、吸能能力的影响,并进一步比较了不同薄弱环节设置的波纹梁在以6.5m/s的速度碰撞刚性地面时的能量吸能能力。 The trigger geometry is a key technology to the ability of energy absorption of composite structures. Reasonable design of triggering mechanism can make composite structures destroyed steadily and gradually thus lead to more energy absorbed. The FEM models of three sets of wavedbeams with different sizes were set up with the explicit finite element code MSC/DYTRAN. Based on the good correlation of experimental results and numerical data of waved-beams, the effect of different trigger geometries on the peak load and energy absorption property was analyzed. The energy absorption capability of the waved-beams with different trigger geometry was further compared when the waved beams impacted the rigid ground at a velocity of 6.5m/s.
出处 《材料工程》 EI CAS CSCD 北大核心 2006年第5期28-31,共4页 Journal of Materials Engineering
基金 高校博士点基金资助项目(20020287003) 江苏省研究生创新计划项目(xm0421)
关键词 复合材料 波纹梁 能量吸收 薄弱环节 composite material waved-beam energy absorption triggering mechanism
  • 相关文献

参考文献6

二级参考文献24

  • 1[1]Bannerman D C, Kindervater M. Crash impact behaviour of simulated composite and aluminum helicopter fuselage elements [J]. Vetica,1986, 10(2):201-211.
  • 2[2]Sen J K. Designing for crashworthy all-composite helicopter fuselage [J]. J of AHS,1987, 32(2):56-65.
  • 3[3]Ulrich D, Pickett A K, Haug E, et al. Crash simulation and verification for metallic,sandwich and laminate structures [R].AD/A212606. 1-18.
  • 4[4]Barquet H, Sarlin P. The development of a crashworthy composite fuselage and landing gear [A]. ln: The 48th AHS: Annual forum and technology display [C]. 1992.1421-1430.
  • 5[5]Delsart D, Johnson A F. Development of numerical tools for the crash prediction of composite helicopter structure [A]. ln: The 56th AHS:Annual Forum [C]. 2000.1458-1471.
  • 6Mamalis A G, Robinson M, Manolakos D E, et al. Crashworthy capability of composite material structures[J]. Composite Structures, 1997,37:109~134.
  • 7Knack J L, Vizzini A J. Energy absorption of truncated kevlar epoxy cones under side loads[R]. AIAA-94-1354-CP, 1994.2831~2837.
  • 8Dubey D D, Vizzini A J. Energy absorption of composite tubes and plates[R]. AIAA-96-1364,1996.419~426.
  • 9Bark L W, Yaniv G. Cost-effective production of helicopter energy-absorbing subfloor structures with advanced thermplastic composites[A]. American Helicopter Society 49th Annual Forum[C]. 1993.519~529.
  • 10Jackson K E, Fasanella E L. Crash simulation of a 1/5-scale model composite fuselage concept[A]. 1999 MSC Aerospace Conference Proceedings[C]. Long Beach, CA,1999.

共引文献46

同被引文献109

引证文献7

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部