期刊文献+

基于自适应遗传算法的多目标PID优化设计 被引量:8

Multi-objective optimization of PID regulators based on adaptive genetic algorithms
下载PDF
导出
摘要 提出一种基于自适应遗传算法的多目标PID优化设计方法。采用染色体实数编码和具有自适应交叉概率和变异概率的遗传算法对PID参数寻优,有效地提高了遗传算法的全局搜索能力和收敛速度。通过在适应度函数中引入表示超调量、上升时间和稳态误差的指标项,并对指标项适当加权,可使优化后的PID调节器的综合性能达到满意程度。仿真结果表明,该PID调节器的性能优于常规方法获得的PID调节器。 A novel multi-objective optimization method for parameter tuning of PID regulator based on adaptive genetic algorithms is proposed. By using real value encoding and adaptive crossover and mutation probabilities, the global searching ability and the convergence speed of the genetic algorithms are significantly improved. With the introduction of the terms which represent overshoot, rise time and steady error of the system in the fitness function and properly weighting these terms, the overall performance of the PID regulator is optimized to satisfaction. Simulation results show that the performance of the optimized PID regulator is superior to that of the conventional PID regulator.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第5期744-746,790,共4页 Systems Engineering and Electronics
基金 江苏省高校自然科学研究计划基金资助课题(03KJB510041)
关键词 自适应遗传算法 PID调节器 多目标优化 adaptive genetic algorithm PID regulator multi-objective optimization
  • 相关文献

参考文献6

  • 1Ziegler J B,Nichols N B.Optimum settings for automatic controller[J].Trans.ASME,1942,64:759-768.
  • 2Astrom K J,Hagglund T.The future of PID control[J].Control Engineering Practice,2001,9:1163-1175.
  • 3Astrom K J,Hagglund T.PID controllers:theory,design and tuning[J].Instrument Society of America,1995.
  • 4Man K F,Tang K S,Kwong S,et al.Genetic algorithms for control and signal processing[M].London:Springer Verlag,1997.
  • 5Srinivs M,Patnaik L M.Adaptive probabilities of crossover and mutation in genetic algorithms[J].IEEE Trans.on Systems,Man and Cybernetics,1994,24(4):656-667.
  • 6Zhou Yisheng,Lai Linying.Optimal design for fuzzy controllers by genetic algorithms[J].IEEE Trans.on Industry Applications,2000,36(1):93-97.

同被引文献82

引证文献8

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部