期刊文献+

基于改进粒子群优化的非线性最小二乘估计 被引量:14

Nonlinear least squares estimation based on improved particle swarm optimization
下载PDF
导出
摘要 针对测量数据处理中非线性模型参数估计理论广泛使用的传统牛顿类算法对初值的敏感性问题,提出了一种求解非线性最小二乘估计的改进粒子群优化算法。该算法利用均匀设计方法在可行域内产生初始群体,无需未知参数θ的较好的近似作为迭代初值,而具有大范围收敛的性质;通过偏转、拉伸目标函数有效地抑制了粒子群优化算法易收敛到局部最优的缺陷。给出应用该方法到NLSE的具体步骤,通过仿真实验证明该算法的有效性。 To investigate the sensitivity of the traditional Newton methods widely used in the theory of nonlinear least squares estimation (NLSE) in geodesic data processing to the initial point, an improved particle swarm optimization (PSO) algorithm is proposed. It generates the initial population in feasible field by uniform design method, so it has the property of convergence in large scale without better approximation of the unknown parameter θ as iterative initial point. It restrains PSO' s local convergence limitation efficiently by deflection and stretching of objective function. Finally the detailled steps of the proposed method for NLSE are given, and experiments done show the improved technique's effectiveness.
作者 高飞 童恒庆
出处 《系统工程与电子技术》 EI CSCD 北大核心 2006年第5期775-778,共4页 Systems Engineering and Electronics
基金 武汉理工大学校基金(XJJ2004113) UIRT计划(A156 A157)资助课题
关键词 统计学 参数估计 粒子群优化算法 非线性最小二乘估计 statistics parameter estimation particle swarm optimization nonlinear least squares estimation
  • 相关文献

参考文献7

  • 1Eberhart R C,Shi Y.Comparing inertia weights and constriction factors in particle swarm optimization[C]∥ Proc.of the 2000 Congress on Evolutionary Computation.IEEE Service Center:Piscataway,NJ,2000,84-88.
  • 2Schutte J F,Reinbolt J A,Fregly B J,et al.Parallel global optimization with the particle swarm algorithm[J].Int.J.Numer.Meth.Engin,2004,61:2296-2315.
  • 3Parsopolos K E,Vrahatis M N.Recent approaches to global optimization problems through particle swarm optimization[J].Natural Computing,2002(1):235-306.
  • 4谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:422
  • 5Ma C X.Uniform design based on centered L2 discrepancy Un(ns)[DB/OL].http://www.math.hkbu.edu.hk /UniformPSOsign/Un_n^s.html,1999,9.
  • 6Magoulas G D,Vrahatis M N,Androulakis G S.On the alleviation of local minima in back propagation[J].Nonlinear Anal.Theory Meth,1997(30):4545-4550.
  • 7田玉刚,王新洲,花向红.非线性最小二乘估计的遗传算法[J].测绘工程,2004,13(4):6-8. 被引量:10

二级参考文献34

  • 1[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 2[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 3[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 4[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 5[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 6[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 7[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 8[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 9[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.
  • 10[6]Kennedy J. The particle swarm: Social adaptation of knowledge[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Indiamapolis,1997.303-308.

共引文献430

同被引文献109

引证文献14

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部